Smarter Work Zones Webinar Series

Webinar #15: Work Zone Impacts and Strategies
Estimator (WISE) Software Pilot Sites

John Corbin, Subrat Mahapatra, Thomas Jacobs, Eric Hill, Bhupendra Patel, Paul Ricotta, Brad Freeze, and Sabya Mishra

October 11, 2016 1:00-2:30pm EDT

Efficiency through technology and collaboration

Every Day Counts
Smarter Work Zones

INTRODUCTION AND TODAY’S SPEAKERS
Today’s Speakers

John Corbin
SHRP2 Reliability Specialist, R11 Product Co-Lead
FHWA Resource Center

Subrat Mahapatra
Transportation Manager
Maryland SHA

Thomas Jacobs
Director, CATT
University of Maryland

Eric T. Hill
Director of Transportation System Management and Operations
MetroPlan Orlando

Bhupendra Patel, Ph.D.
Director of Modeling
AMBAG

Paul Ricotta, P.E.
Principal Transportation Engineer
Caliper Corporation

Brad Freeze, P.E.
Traffic Operations Division, Director
Tennessee DOT

Sabya Mishra, Ph.D., P.E.
Assistant Professor
University of Memphis
Webinar Overview

• Work Zone Traffic Analysis
• SHRP2 Summary
• Origins of the WISE Tool
• Status of WISE Implementation

Source: Georgia DOT
How Travelers Experience Work Zones

Source: Washington State DOT

Source: Michigan DOT
The Work Zone Management Program Context

• Increasing number & impacts of work zones
• Need for corridor or network-level planning
• Work Zone Safety & Mobility Rule (2004)
• State-level work zone safety and mobility
 – Work Zone Delay Policy
 – Processes & Procedures
 – Work Zone Impacts Assessment & Management
 …Project-specific Work Zone Transportation Management Plans
• Transportation Management Planning
FHWA Work Zone Traffic Analysis Tools Guidance

- **Vol. VIII for Decision-Makers**
 - Guidance for engineers & reviewers
 - “Decision-Making Engine”
 - Selecting correct tools
- **Vol. IX for Analysts**
 - Guidance for analysts
 - Case studies
- **Vol. XII “Decision Framework”**
 - Maintenance of Traffic Alternatives Analysis (MOTAA)
 - Modeling tool selection framework
 - Model development and application process
 - Detailed case studies

Source: FHWA
Work Zone Management Decision-Making Engine

Scheduling Decisions

Application Decisions
(Construction Techniques)

TMP Decisions
(Traffic Accommodation)
Strategic Highway Research Program Focus Areas

Safety: fostering safer driving through analysis of driver, roadway, and vehicle factors in crashes, near crashes, and ordinary driving

Reliability: reducing congestion and creating more predictable travel times through better operations

Capacity: planning and designing a highway system that offers minimum disruption and meets the environmental and economic needs of the community

Renewal: rapid maintenance and repair of the deteriorating infrastructure using already-available resources, innovations, and technologies
The Seven Causes of Unreliability

The Reliability Focus Area research has attributed variability in travel time to seven primary causes:

1. Incidents
2. Weather
3. Work zones
4. Fluctuations in demand
5. Special events
6. Traffic devices (Signals)
7. Inadequate base capacity

Source: FHWA
Reliability Product “Bundles”

TSMO Organizational Capabilities

Advanced Operations Strategies

National TSMO Community

Reliability Analysis Tools (TSMO Decision Support)

Source: All images from Google
R11: Strategic Approaches at the Corridor and Network Levels to Minimize Disruption from the Renewal Process

- Multiple roadwork projects.
- How can they be coordinated to reduce the combined traffic impacts?
- What strategies can help?

Source: FHWA
WISE: Work Zone Impacts and Strategies Estimator Software

Solution

- A decision support system for use by planners and engineers.
- Helps them:
 - Evaluate traffic impacts of combinations of work zones
 - Identify best sequencing to manage impacts

Benefits

- Better coordinated and planned work zones.
- Reduced mobility, safety, and economic impacts of highway renewal activities.
- Increased public satisfaction.

Source: FHWA
WISE Implementation Plan

Implementation Plan Goals

1. Software enhancement & readiness
2. Software validation, demonstration, & application
3. Transportation community awareness & use
4. Institutionalization

R11 Implementation Assistance Opportunity

• Identify, assess, address software needs for refinements to address readiness
• Enable and expand software demonstration and application
• Build national work zone traffic analysis knowledge base
WISE SHRP Implementation Assistance Sites

Source: FHWA
What are Smarter Work Zones (SWZ)?

Innovative strategies designed to optimize work zone safety and mobility

- Policies and practices used to incrementally and continuously improve WZ operations
- Tools to reduce WZ crashes and delays
- Tools to enhance WZ management strategies

Smarter Work Zone Initiatives

- Project Coordination
- Technology Applications
Project Coordination Definition and Goals

- Coordination within a single project and/or among multiple projects within a corridor, network, or region and possibly across agency jurisdictions to minimize work zone traffic impacts

Goal 1
By December 2016, 25 State DOTs have incorporated work zone project coordination strategies into agency documentation and business processes.

Goal 2
By December 2016, 5 State DOTs have volunteered to pilot the Work Zone Impacts and Strategies Estimator (WISE) software.
For More Information:

Tracy Scriba
FHWA SHRP Reliability Program Coordinator &
R11 Product Lead
tracy.scriba@dot.gov

John Corbin
R11 Product Co-Lead
john.corbin@dot.gov

www.transportationops.org

www fhwa dot gov GoSHRP2

goSHRP2@dot.gov
Smarter Work Zones
WISE Software Proof-of-Concept (R11) in Maryland

Subrat Mahapatra
Thomas Jacobs
Maryland SHA
University of Maryland
Today’s Agenda

• **Background - Maryland/ MATOC Work Zone Planning**

• **MD R11 Scope of Work & Status**

• **MD R11 WISE Testing Overview/ Next Steps**
Maryland Work Zone Planning Motivation

MDOT State Highway Administration (SHA) TSM&O Plan recognizes “Work Zone Management” as a key implementation strategy

- Safety is #1 driver for WZ management with various tools like Lane Closure Permitting System, WZ Performance Dashboard etc. supporting agency operations

- Solid data, analytical and institutional foundation in place for Smarter Work Zone Initiatives at a System/Program level

- WISE Tool Implementation hopes to build a data driven WZ Planning framework

Source: Maryland SHA
Maryland/MATOC WZ Planning

- Partnership of MDOT, VDOT, DDOT, WMATA
- Began in 2009
- Comprised of:
 - Steering Committee
 - Information Systems Committee
 - Operations Subcommittee
 - Severe Weather WG
 - Regional Construction Coordination WG

www.matoc.org

Source: MATOC
MATOC RCC WG Purpose

• Purpose:
 – Within NCR, the MATOC Regional Construction Coordination Working Group will Work to:

 • Reduce potential for conflicting lane/road closures and special events

 • Schedule regular meetings for key personnel to discuss construction related lane closures and special events

 • Develop Enhanced Public Information Resources as well as Internal/External WZ Information Dissemination Capabilities

 • Share Agency Best Practices (e.g. WZ lane closure permitting systems)
MATOC List of Agency Planned Construction/Work Zone Projects by Year

List of Agency Projects 2015 - 2020: List of Projects Presented on March 31, 2015.

<table>
<thead>
<tr>
<th>Date</th>
<th>Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1/2015</td>
<td>MDOT</td>
<td>US-50 Asphalt Overlay of L手套fford Vista Rd to Anne Arundel County Line</td>
</tr>
<tr>
<td>2/2/2016</td>
<td>VDOT</td>
<td>US-1 & VA-123 Interchange Prince William County</td>
</tr>
<tr>
<td>3/1/2016</td>
<td>MDOT</td>
<td>MD-373 and Brandywine Road Relocated - Phase 2</td>
</tr>
<tr>
<td>3/1/2016</td>
<td>VDOT</td>
<td>VA-27 over VA-110 Arlington County Modify and repair the VA-27 Bridge over VA-110.</td>
</tr>
<tr>
<td>3/2/2016</td>
<td>VDOT</td>
<td>I-95 and US-15 Interchange Reconstruction Prince William County</td>
</tr>
<tr>
<td>4/1/2015</td>
<td>NPG</td>
<td>National Mall and Kutz Bridge Repair and Sidewalk Widening</td>
</tr>
<tr>
<td>4/12/2015</td>
<td>NPG</td>
<td>Memorial Park - Kutz Bridge Repair and Sidewalk Widening</td>
</tr>
<tr>
<td>5/1/2015</td>
<td>MDOT</td>
<td>MD-193 Safety and Resurfacing Safety and Resurfacing with daytime and nighttime lane closures</td>
</tr>
<tr>
<td>6/1/2015</td>
<td>MDOT</td>
<td>MD-210 Grade Separated Interchange Key Bridge over Potomac River Richardson Bridge</td>
</tr>
</tbody>
</table>

Source: MATOC
Lane Closure Permit Program

Source: Maryland SHA
MARYLAND R11 SOW Status

• Task 1 – Develop a calibration/re-calibration module for WISE (underway)

• Task 2 – Prepare list of long term planned work zone projects in the NCR (complete)

• Task 3 – Enhance the user demand and behavior inputs (underway)

• Task 4 – Validation

• Task 5 – Final Report
MARYLAND R11 – WISE Testing Overview

Source: Maryland SHA
MARYLAND R11 Next Steps

» Technical
 • Model Calibration
 • Interface Development
 • Scenario/ Sensitivity Testing

» Institutional
 • Making a business case for WISE Tool
 • Programmatic (across agencies/ asset/ funding categories)
 • Area wide/ Corridor Specific
 • Coordination and Communication

» Performance Management
 • TSM&O
 • FAST Act/ MAP-21/ MDOT Excellerator
For More Information:

Subrat Mahapatra
Maryland SHA (State Lead)
smahapatra@sha.state.md.us

Tom Jacobs
UMD CATT (Project Lead)
tjacobs@umd.edu

Dr. Lei Zhang
UMD NTC (Technical Lead)
lei@umd.edu
Smarter Work Zones
METROPLAN ORLANDO: SHRP2 WISE IMPLEMENTATION

ERIC T. HILL **METROPLAN ORLANDO**
MetroPlan Orlando
MetroPlan Orlando Planning Area
MetroPlan Orlando Role in the Project

• Project Management
 – University of Central Florida
 – Caliper Corporation

• Liaison

• Technical assistance
Two million people… and by 2040, ONE MILLION MORE
66.1 million visitors in 2015

Source: Visit Orlando
How Freight Moves

95%

4%

1%

<0.1%
Transportation Improvement Program (TIP)

Federal & State Funds
2016/17 to 2020/21

<table>
<thead>
<tr>
<th>Category</th>
<th>Totals ($000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway</td>
<td>1,653,981</td>
</tr>
<tr>
<td>TSMO</td>
<td>43,563</td>
</tr>
<tr>
<td>Bike/Ped</td>
<td>90,009</td>
</tr>
<tr>
<td>Transit</td>
<td>1,001,068</td>
</tr>
<tr>
<td>SunRail</td>
<td>83,708</td>
</tr>
<tr>
<td>Aviation</td>
<td>225,556</td>
</tr>
<tr>
<td>Total</td>
<td>3,097,885</td>
</tr>
</tbody>
</table>

More details on website
Transportation Systems Management and Operations

• TSMO Advisory Committee
• Traffic Incident Management (TIM)
• Safety
• Active Transportation Demand Management (ATDM)
• TIP
Challenges and Solutions

• Operating WISE; rewriting code
• Functionality of DTA; reformulation
• Traffic counts; coordination with FDOT
For More Information:

Eric T. Hill
Director, Transportation Systems Management and Operations
MetroPlan Orlando
ehill@metroplanorlando.com
Smarter Work Zones
DATA COLLECTION AND DYNAMIC TRAFFIC ASSIGNMENT ON MONTEREY REGION

BHUPENDRA PATEL, PH.D. AMBAG
PAUL RICOTTA, P.E. CALIPER CORPORATION
Project Outline

- Evaluation of the WISE and propose potential remedies to improve WISE
- Network coding for DTA in TransModeler
- Data collection for sub-area DTA
- WISE modifications
- DTA Model calibration and validation
- Coding of Construction Projects for WISE applications
- WISE applications (Planning and Operation)
- Webinar/training to increase awareness and use of WISE
AMBAG Region and Interests in WISE Pilot Testing

- Regional Challenges
- Evaluate impact of construction on travel time reliability
- Minimize travel delay
- Enhance safety
- Increase coordination and communication among agencies

Source: AMBAG
Evaluation of WISE Software

• Current implementation is cumbersome and difficult to use for most MPO or DOT staff.
• Extensive manipulation of network data is required to make it usable in WISE.
• Present traffic re-assignment calculation makes little sense for larger projects that impact route choices at the origin-destination level.
• Integration with travel models should allow user to input delay and/or diversion calculations directly without the need for ad hoc detour calculations in WISE.
• WISE not capable of properly handling complex sequencing of projects.
• No support for project phasing or for defining projects that span more than one link.
Potential Remedies to Improve WISE

• Streamline input process, bypass network importer, editor, and redefine how projects are defined.
• Provide additional guidance to WISE evaluation by including critical parameters such as seasonal traffic variation, work zone hours, project priority, and possible mitigation strategies.
• Allow modeling platform to define detours through static OR dynamic assignment.
• Completely bypass ad-hoc detour building in WISE which presently uses a myopic k-shortest path and buffering methodology.
• Inclusion of time of day-based input parameters to better capture travel behavior.
• Improve WISE reporting mechanisms so output is more easily understood.
Data Collection

• Meso-Scopic Network in AMBAG Region: 100 Miles
 – Including California State Route (SR) 68, US HWY 1, and Local arterials
• 17 BlueMAC devices installed
 – Data Collection period: 2/18/2016 ~ 4/22/2016
• 11 video recorders installed for turning movement counts
 – Data Collection period: 2 weeks
• 17 Additional intersections for signal timing/turn movement
 – Data is provided by Caltrans and 3 Local Municipalities
Data Collection Sites and Devices

- **Turning Movement Videos (11)**

- **BlueMAC Readers (17)**

Source: AMBAG
BlueMAC device data (1 of 2)

Projects > Monterey Deployment

Overview

Status: Complete
No of Locations/Devices: 17
Start Date/Time: 2/18/2016 12:00 AM (UTC-8)
End Date/Time: 4/22/2016 11:59 PM (UTC-8)

Description
Created by PRW 2/24/16

![Map of Monterey Deployment](image)

Overview Table

<table>
<thead>
<tr>
<th>Status</th>
<th>Location</th>
<th>Last Checkin</th>
<th>Total Devices (Last 7 days)</th>
<th>Weekly Trend (Last 7 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanco @ S Davis (130)</td>
<td>4/22/2016 11:53 PM</td>
<td>9,536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWY 68 @ Laureles Grade (3)</td>
<td>4/22/2016 11:53 PM</td>
<td>11,326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWY 68 @ Olmsted (96)</td>
<td>4/22/2016 11:59 PM</td>
<td>8,159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWY 68 @ Portola (127)</td>
<td>4/17/2016 3:50 AM</td>
<td>7,650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWY 68 @ Reservation (77)</td>
<td>4/22/2016 11:50 PM</td>
<td>10,067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWY 68 @ San Benancio (112)</td>
<td>4/22/2016 11:56 PM</td>
<td>9,766</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: AMBAG
BlueMAC device data (2 of 2)

- **Provides average travel times:** by 5min/15min/Hourly/Daily on a specific route between two installed detectors with link information

Source: AMBAG
Turning Movement data

- Data selected on
 - Feb 23~24, 2016
 - 4:00~6:00 PM

![Diagram of Turning Movement data]

Source: AMBAG
Additional Turning Movement & Signal Schedules

- 17 additional intersections for signal time/turning movements
- Data is provided by
 - Caltrans
 - 3 Local Municipalities
For More Information:

Bhupendra Patel, Ph.D.
Director of Modeling
Association of Monterey Bay Area Governments (AMBAG)
bpatel@ambag.org

Paul Ricotta, P.E.
Principal Transportation Engineer
Caliper Corporation
paul@caliper.com
Smarter Work Zones
PROJECT COORDINATION USING WISE:
TN PILOT PROJECT

BRAD FREEZE, P.E.
SABYA MISHRA, PH.D., P.E.

TENNESSEE DOT
UNIVERSITY OF MEMPHIS
Overview

• Motivation
• Goals and Tasks
• Rationale
• Pilot Project Experience
• Challenges and Limitations
• Initial Recommendations
Motivation to WISE (1 of 2)

• Significant projects which are anticipated to cause sustained work zone impacts

• Currently revising the TDOT Work Zone Safety Mobility Manual and reformatting the Transportation Management Plan Process (TMPs)

• Optimal multiple project coordination helps to reduce work zone related crashes

• Obtain three pillars of benefit
 – Social
 – Economic
 – Environmental

Source: TDOT
Motivation to WISE (2 of 2)

• Need in Tennessee for coordinating work zone (WZ) projects
 – Type: construction, maintenance, utility, etc.
 – Pass through state
• TDOT selected EDC-3 Smarter Work Zones as an initiative to help stimulate and support the improvement of work zone planning.
• TDOT has an existing lane closure decision support system software that is underutilized and is in need of revitalization.
• In TN
 – Approximately 500 WZ/year on interstates/state routes
 – Highest type of WZ are construction.
Goals and Tasks

- Goals of the pilot project
 - Assessment of WISE to identify limitations
 - Recommendations to improve WISE
- Tasks of pilot project include
 - Collect network and WZ data,
 - Build
 - Planning and operational strategies for WZ sequencing
 - Model calibration and validation
 - Use WISE to optimize sequence of WZ projects
Rationale Work Zone Sequencing

1. Decision Maker Objective: e.g. Minimize Congestion

2. Users Objective: Minimum cost path choice

3. Input: # of WZs, and their characteristics, Budget and other constraints

4. Input: Network, Origin-Destination, and other supply demand features

5. Output: Sequence of WZ activities

6. Output: Link flow and path choices

Planning

Operations

Every Day Counts
Pilot Project – Shelby County, Memphis, Tennessee

Shelby county: Located in Memphis Metropolitan Area

Source: Memphis Metropolitan Planning Organization (Interactive Map)
Pilot Project Network Overview

Total Length of Roadway Segments (miles)

<table>
<thead>
<tr>
<th>Category</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Interstates</td>
<td>2.1</td>
</tr>
<tr>
<td>Urban Interstates</td>
<td>60.3</td>
</tr>
<tr>
<td>Rural Principle Arterials</td>
<td>28.6</td>
</tr>
<tr>
<td>Urban Principle Arterials</td>
<td>232.7</td>
</tr>
<tr>
<td>Urban Freeways/Expressways</td>
<td>35.5</td>
</tr>
<tr>
<td>Rural Minor Arterials</td>
<td>13.6</td>
</tr>
<tr>
<td>Urban Minor Arterials</td>
<td>513.2</td>
</tr>
<tr>
<td>Rural Major collectors</td>
<td>7.7</td>
</tr>
<tr>
<td>Urban Collectors</td>
<td>383.3</td>
</tr>
<tr>
<td>Rural Minor Collector</td>
<td>81.7</td>
</tr>
<tr>
<td>Local Roads</td>
<td>3183.5</td>
</tr>
</tbody>
</table>

Source: TDOT
NeXTA – Study Area Network

Network Properties
Nodes: 26,348
Links: 38,606
O/D pairs: 1,267

Limitation:
23,000 nodes

Source: TDOT
NeXTA – Simplified Study Area Network

Network Properties

Nodes: 3,649
Links: 3,696
O/D pairs: 1,267

Source: TDOT
Pilot Project Work Zones

<table>
<thead>
<tr>
<th>Work Zone Type</th>
<th>Frequency (1992-2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed/Ongoing</td>
<td>511</td>
</tr>
<tr>
<td>Proposed/Not Started</td>
<td>51</td>
</tr>
<tr>
<td>Total</td>
<td>562</td>
</tr>
</tbody>
</table>

Source: TDOT
Pilot Project Work Zone Characteristics (1 of 2)

Source: TDOT
Pilot Project Work Zone Characteristics (2 of 2)

Frequency of Work Zones in Tennessee

Year

Work Zone Frequency

Source: TDOT
Work Zone Crashes

- Anticipated decrease in WZs because of informed rerouting and better planning

Source: TDOT
Challenges and Limitations

• Data Preparation
 – Identify work zones to be analyzed
 • State, MPO, and City (all have different databases!)
 – Sub-area selection if the network is bigger
• WISE uses DynusT for DTA
 – Provide flexibility to include other software
• Significant effort needed mesoscopic model calibration
• Detail construction cost components not defined as input in WISE
 – Labor, materials, tools, schedule conflict, and other components
Initial Recommendations

- Enhance GUI
 - (for wider use make it practitioner friendly)
- Data input/output
 - (provide example data structure)
- Analyze larger number of WZ projects
 - (test other sequencing algorithms)
- Capacity to analyze larger network
 - (for planning enhance traffic assignment algorithm)
- Support other DTA platforms
 - (direct WISE to other DTA platforms)
Brad Freeze, P.E.
Traffic Operations Division, Director
Tennessee Department of Transportation
phillip.b.freeze@tn.gov

Sabya Mishra, Ph.D., P.E.
Assistant Professor
University of Memphis
smishra3@memphis.edu
Smarter Work Zones

FHWA RESOURCES
SWZ Interactive Toolkit Available!

https://www.workzonesafety.org/SWZ/

Source: FHWA
Other Resources – Project Coordination

| --- | --- |
Thanks for joining us!

• Questions or Comments?

Smarter Work Zones
- Jawad Paracha (FHWA Operations, WZ Management Team)
 jawad.paracha@dot.gov
- Visit The National Work Zone Safety Information Clearinghouse website for more information https://www.workzonesafety.org/swz

SHRP 2/WISE Software
- Tracy Scriba (FHWA SHRP Reliability Program Coordinator & R11 Product Lead)
 tracy.scriba@dot.gov
- Visit the TRB SHRP2 R11 website for more information http://www.trb.org/Main/Blurbs/168143.aspx