Smarter Work Zones Webinar Series **Webinar #2: Implementing Technology Application Solutions** Todd Peterson and Gerald (Jerry) Ullman September 29, 2015 1:00-2:30pm EDT Efficiency through technology and collaboration ## Smarter Work Zones Introduction and Today's Speakers ## **Today's Speakers** Todd Peterson, P.E., PTOE Transportation Specialist FHWA Office of Operations Gerald (Jerry) Ullman, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute #### **Smarter Work Zones Webinar Series** - This is the second in a series of <u>bi-weekly</u> SWZ webinars - Topics based on what matters most to you! - Webinars include: - Previously Recorded: - Webinar #1: A Comprehensive Overview of the SWZ Initiative (9/9/2015) - https://www.workzonesafety.org/swz/webinar1 #### – Coming Up: | October | 10/15 | Webinar #3: SWZ Corridor-Based Coordination | | |----------|-------|---|--| | | 10/26 | Webinar #4: TA Technology Showcase: Queue Warning Systems | | | November | 11/2 | Webinar #5: SWZ Program-Based Coordination | | | | 11/12 | Webinar #6: TA Case Studies: VSL and Dynamic Merge | | | December | 12/2 | Webinar #7: Work Zone Project Coordination Guide and Examples | | | | 12/15 | Webinar #8: TA/PC Showcase: Corridor Traffic Management | | #### For additional information go to: https://www.workzonesafety.org/SWZ/main ## Purpose of Today's Webinar Provide a comprehensive overview of the Work Zone Intelligent Transportation Systems (ITS) Implementation Guide and associated case studies as they relate to the SWZ initiative. #### **Topics include:** #### 1. SWZ Technology Application Initiative Show how the SWZ Technology Application initiative can be used by agencies to enhance their current work zone management practices #### 2. Work Zone ITS Implementation Guide Explain the systematic approach to implementing work zone ITS via the 6-step Work Zone ITS Implementation process #### 3. SWZ Case Studies Provide real-world examples of Work Zone ITS implementation via the 6-step process and the associated benefits ## Smarter Work Zones TECHNOLOGY APPLICATION INITIATIVE ## What are Smarter Work Zones (SWZ)? Innovative strategies designed to optimize work zone safety and mobility - Policies and practices used to incrementally and continuously improve WZ operations - Tools to reduce WZ crashes and delays - Tools to enhance WZ management strategies #### **Two Identified SWZ Initiatives:** #### **Project Coordination** Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions ### **Technology Application** Deployment of Intelligent Transportation Systems (ITS) for dynamic management of work zone traffic impacts, such as queue and speed management Today's Focus of Discussion ## **Technology Application – What is it?** Deployment of ITS for dynamic management of work zone traffic impacts, such as queue and speed management to **provide actionable information** to drivers and traffic managers. #### Capabilities include: - Improving driver awareness - Providing dynamic and actionable guidance to drivers - Enhancing tools for on-site traffic management Source: FHWA ## **SWZ Technology Application Goals:** #### Goal 1A By December 2016, 35 State DOTs have implemented business processes for work zone ITS technologies as identified in the Work Zone ITS Implementation Guide #### What does this mean? Well-documented agency policies and processes to streamline consideration and use of work zone ITS technologies to minimize traffic impacts ## **SWZ Technology Application Goals:** #### Goal 1B By December 2016, 35 State DOTs have utilized at least one work zone ITS technology application for dynamic management of work zone impacts #### What does this mean? - Consideration of the six step process explained in the WZ ITS implementation guide to plan and implement ITS strategies - Identify and use ITS strategies such as speed and/or queue management on at least one project for dynamic management of work zone impacts ## Smarter Work Zones Work Zone ITS Implementation Guide #### **Focus of the Guide** - Provide guidance on implementing ITS in work zones to assist public agencies, design and construction firms, and industry stakeholders - Presented through a 6-Step Systems Engineering Approach to WZ ITS implementation ## Work Zone ITS Implementation Guide Steps **Assessment of Needs** Concept Development & Feasibility **Detailed System Planning & Design** **Procurement** System Deployment System Operation, Maintenance, and Evaluation 6 Applies to any WZ ITS deployment regardless of scale ## **Step 1. Needs Assessment Considerations** ## **Step 1: Key Takeaways** - Plan with the end in mind - Use a coordinated approach consider issues in the context of impacts assessment and TMP development - Stakeholders and project team have been identified #### **Step 1 Outcome** Preliminary framework of user needs, goals and objectives, and existing ITS resources Step 2. Considerations for Concept Development and **Feasibility** - Is the system permitted in the current laws and regulations? - What is the potential increased liability for placing ITS equipment in the work zone? - What are possible liability issues regarding how warnings and messages are given? Stand-alone, COTS equipment) ## **Examples of Benefits for Various WZ ITS** | Work Zone ITS | Issue(s) being
Addressed | States with Studies
of Example
Deployments ¹ | Example of Benefits | |--|--|---|--| | Real-time Traveler Information | CongestionDelaySafety | CA, DC, NE, OR | 16-19% reduced traffic volumes (diversion) on affected route (CA) | | Queue Warning | Safety (crashes) | IL | Significantly reduced speed variance; reduced vehicle conflicts; queuing crashes reduced 14% despite an increase in both lane closures and vehicle exposure. | | Dynamic Lane Merge
(early merge, late
merge) | DelayAggressive driving
behaviorTravel speedSafetyQueue length | FL, MI, MN | Reduced forced and dangerous merges by factors of 7 and 3, respectively (MI) | | Incident
Management | Incident clearance
timeDelay | NM | Reduced average time to respond and clear incident from 45 minutes to 25 minutes (NM) | | Variable Speed
Limits (VSL) | Speed managementSafety | VA, UT | Greater speed compliance vs. static signs; reduced average speed and variation (UT) | | Automated
Enforcement | Speed management | MD, IA, IL, OR | Significantly reduced speeds by 3-8 mph (IL) | | Entering/Exiting Vehicle Notification | Safety | MN, PA | Signs warn drivers of a slow-moving construction or emergency vehicle entering or exiting the roadway to reduce crash risk. | ## **Step 2: Key Takeaways** - Engage ITS staff as a source of expertise - Achieving a broad level of consensus in this step is a prerequisite to moving to Step 3 - Presenting results of Step 2 to stakeholders is essential #### Step 2 Outcome Concept of Operations Report ## Step 3: Detailed System Planning and Design Develop system requirements and specifications, develop performance measures for the system objectives, and prepare plans for deployment and subsequent operations and maintenance. #### Steps include: - Determining system requirements and specifications - Developing the system design - Developing a testing strategy - Planning for operations and maintenance - Determining staff training needs for those using and operating the WZ ITS - Planning for public outreach - Investigating system security - Planning for evaluation - Estimating system benefits and costs ## **System Requirements** - Effective requirements define performance requirements and targets rather than design features - Requirements should link to a user need - Requirements should be verifiable and monitored for compliance ### **Planning for Evaluation** The primary purpose of evaluation is to: - Identify changes needed to optimize operation and improve performance - Understand and quantify benefits of the system - Document lessons learned # Example Evaluation Criteria | Evaluation
Objective | Hypothesis | Measures of Effectiveness | Required Data | |---|---|---|--| | Mobility – Reduce delay and optimize travel times through the construction corridor by providing advanced traveler information. | The ITS will reduce travel time through the corridor during construction. | Change in travel time over baseline conditions in the primary direction during construction. Change in the overall corridor-wide travel time reliability Change in travel time on recommended or viable alternate routes | Observed corridor travel time during construction Observed travel time variability Observed alternate route travel times during construction Observed queue lengths before and after ITS on mainline routes | | Safety – Improve
traveler safety in the
construction corridor | The ITS implementation will reduce crash risks during construction. | Changes in the number of crashes or crash severity occurring in the corridor Changes in speed variability along the corridor during construction Change in the number of conflicts that occur in the corridor during construction | Historical crash data Real-time crash data Observed speed variability
during construction Observed number of conflict
situations occurring during
construction | | Customer Satisfaction – Improve travel satisfaction for corridor users during construction | The ITS will result in improved satisfaction among corridor users. | Corridor traveler perceptions Corridor traveler behavioral
response to system
components Update frequency and
perceived accuracy of
provided information | Opinions of corridor travelers
serving on a panel survey Traffic volumes on alternate
routes and mainline Wide distribution of customer
satisfaction surveys | | Institutional – Improve coordination among implementing agencies. | The ITS will result in improved coordination among implementing agencies. | Number of institutional issues | Documented institutional issues | ## **Step 3: Key Takeaways** - Documentation should include plans for system testing, operation, staffing, public outreach, security, and evaluation throughout duration - Must plan for each of these aspects to avoid issues with system deployment and ensure data will be available for system evaluation - Most effective evaluations occur when the goals and objectives are explicitly stated, measurable, and agreed to by all stakeholders #### Step 3 Outcome Detailed Systems Plan (built off of ConOps) ### **Step 4: Procurement** Procure the work zone ITS by first considering a number of options, based on the type of deployment being procured. #### Steps include: - Assessing procurement options - Deciding direct or indirect procurement - Determining the procurement award mechanism - Issuing a request for proposals - Selecting the preferred vendor, consultant, or contractor ### **Procurement Approaches** - Procurement options depend on the characteristics of the ITS - Traditionally, WZ ITS procurement has primarily been for COTS or customized ITS solutions - Potential now exists for agencies and contractors to purchase data collected by private-sector data providers for similar purposes ## **Step 4: Key Takeaways** - In procuring work zone ITS, there are three different perspectives: - Contracting agency that desires work zone ITS - Contractor responsible for the overall construction project - Vendor who supplies work zone ITS #### Step 4 Outcome - Procurement Type and Mechanism Determined - RFP Issued - Proposal Selected ### **Step 5. System Deployment** Implementing System Plans Role of agency depends on - System size and complexity - Independent operation versus integrated into other ITS operations Scheduling Decisions - Plan for sufficient lead time to deploy - Plan for sufficient calibration time and effort - Expect the unexpected System Acceptance Testing - Conduct system acceptance testing before field activation - Ensure all system requirements are met Handing Deployment Issues - Communications, power, and sensors - Experienced/qualified contractor is beneficial - Have frequent communication ## **Step 5: Key Takeaways** - Coordination of the deployment with other aspects of the project, including other TMP strategies, is important. - Deployment of the ITS must be considered a process while it should follow the implementation plan it must be flexible to deal with: - Changes in overall work zone scope and scheduling - Unanticipated driver needs and responses - Wide range of field conditions and actions which could influence system operations #### **Step 5 Outcome** - System plans, schedule, and acceptance test plans completed - Work Zone ITS deployed ## Step 6: System Operation, Maintenance, and Evaluation - This step covers system operation and maintenance and includes sections on: - Dealing with changing work zone conditions - Using and sharing ITS information - Maintaining adequate staffing - Modifying the strategy and plan based on operational results - Leveraging public support ## **Step 6: Key Takeaways** - Flexibility is important. Staff need to be available to make adjustments, as necessary, due to changing work zone conditions and findings from ongoing system monitoring and evaluation - Final evaluation should be conducted to include findings from available data and detail benefits and lessons learned #### **Step 6 Outcome** Work Zone ITS operational in field with appropriate staff operating and monitoring deployment as necessary ## Smarter Work Zones Work Zone ITS Implementation Examples ### Real-World Work Zone ITS Examples - 1. Callahan Tunnel Rehabilitation Project (Boston, MA) - Accelerated construction project resulting in full tunnel closure - December 2013 March 2014 - Reconstruction and Widening of I-57/I-64 Interchange (Mount Vernon, IL) - Interchange lane closures, reduced lane widths, and reduced shoulder widths - Multi-phase construction from 2011-2013 - 3. I-35 Widening (Central TX) - 96-mile expansion project to widen the highway from and change two-way frontage roads into one-way lanes - May 2013 current - 4. Bangerter Highway (SH 154) Improvement (Salt Lake City, UT) - Design-build contract to build three continuous flow intersections and one interchange - August 2011 April 2012 ## **Step 1 – Assessment of Needs** | Project | Step Description | |-------------|--| | Callahan | Key concerns: | | Tunnel | 1. Congestion | | Rehab | 2. Safety | | | 3. Management and Monitoring | | I-57/I-64 | Key concerns: | | Interchange | Unpredictable queues leading to severe rear-end crashes | | | 2. Lengthy delays when queues form (up to 3-4 miles) | | I-35 | Key concerns: | | Widening | Queues during nighttime lane closures creating rear-end crashes | | | 2. Lane closures and incidents creating localized delays | | | 3. Multiple lane closures on same night creating large cumulative delays | | | 4. Ramp, frontage road, and cross-street lane closures hindering access | | Bangerter | Key concerns: | | Highway | 1. Overall delays | | | 2. Specific delays to turning and cross-street traffic | ## **Step 2 – Concept Development and Feasibility** | Project | Step Description | | | |-----------------------------|---|--|--| | Callahan
Tunnel
Rehab | SWZ system concept of operations involved a self-monitored system to provide current travel information and information on alternate routes | | | | I-57/I-64 | Developed Concept of a SWZ Traffic Monitoring System for: | | | | Interchange | Automatic detection of slow/queued traffic | | | | | 2. Ability to warn approaching motorists of slow/queued traffic | | | | | 3. Encourage diversion by informing motorists of current delays | | | | I-35 | Developed a construction traveler information system concept: | | | | Widening | Direct travel time monitoring throughout the corridor | | | | | 2. Dissemination of travel times en route and pre-trip | | | | | 3. Collation of all lane, ramp, and cross-street closures for dissemination | | | | | Deployment of highly portable end-of-queue warning technology only when and where queues were expected | | | | Bangerter | Operational concept: | | | | Highway | Directly measure travel times for specific origin-destination pairs through the project | | | | | 2. Alert contractor/agency if delay thresholds exceeded | | | ## **Step 3 – Detailed System Planning and Design** | Project | Step Description | |-----------------------------|--| | Callahan
Tunnel
Rehab | COTS Design: • Portable Cameras • Portable Camera/Message Sign combo units • Portable Changeable Message Signs (PCMS) • Probe Sensor Data | | I-57/I-64
Interchange | COTS Design: Radar-based traffic sensors on all interchange approaches PCMS providing slow speed, delay, and diversion recommendation messages Website portal for contractor and agency access (no public access) | | I-35
Widening | Hybrid System Design: • Bluetooth technology to measure travel times in 5-10 mi segments • Volume sensors at critical locations • PCMS integrated with TxDOT Lonestar software to disseminate travel times • Email alert system for lane, ramp, cross-street closures • Public website providing all available traffic information in the corridor • Automated lane closure analyses to assess queue potential • Contractor-based COTS end-of-queue and portable rumble strip deployment where queues anticipated | | Bangerter
Highway | System Design: • Bluetooth technology to monitor various movements through project • Early warning of increased delays to contractor and agency. | ## **Step 4 - Procurement** | Project | Step Description | |-----------------------------|---| | Callahan
Tunnel
Rehab | Jobs either bid as "Lump Sum" or have deployment cost and per month rental cost • Lump Sum: Cost procurement jobs range from \$125K to \$950K, with an average ~\$400k • Monthly Rental: PCMS (\$500-750), Queue Sensor Trailer (\$400 - \$700), Portable Camera Trailer (\$1,000 - \$3,000), System Ops (\$2,500 - \$3,500) | | I-57/I-64
Interchange | Developed description and specifications for contract bid documents for a "turn-key" system involving COTS technology Contractor responsible for identify the vendor they wanted to use Contractors, in turn, conducted their own informal assessment of the systems available, and made a choice of system | | I-35
Widening | Hybrid solution Interagency agreement with university agency to develop and operate the overall system Change ordered end-of-queue warning system deployment on initial contracts Included end-of-queue requirements in subsequent contracts End-of-queue bid as mobilization cost plus a per night deployment charge | | Bangerter
Highway | Direct purchase with on-call contract support for operations: • Bluetooth sensors purchased by department • Consultant provided installation, operation, and evaluation support | ## **Steps 5 and 6 – System Deployment, Operation, Maintenance, and Evaluation** | Project | Step Description | |-----------------------------|--| | Callahan
Tunnel
Rehab | SWZ system continuously evaluated traffic conditions along alternate routes and based on predefined thresholds, PCMS directed motorists to best route MassDOT received very few negative comments SWZ system managed public's expectations which allowed MassDOT to concentrate on addressing construction activities Sharing access to the SWZ System allowed better network management and created a sense of partnership | | I-57/I-64
Interchange | Underestimated equipment needs, required a change order to increase system coverage Activated messages 28 to 68 times per month for extended queues Camera coverage was useful, but not necessarily essential, for successful system Calibrated to slightly overestimate delays | | I-35
Widening | Equipment health status and operations monitored continuously Periodic adjustments to equipment location occurs as construction progresses Post-mortem assessments of traffic impacts are provided to TxDOT at regular intervals Plan underway to transition to permanent ITS operations in corridor | | Bangerter
Highway | System was a test of potential performance-based specification contracting for mobility impacts on design-build projects. Some calibration challenges arose, but were resolved. System was deemed to provide valuable data and alerted agency and contractor if delays started to develop. Contractor initially skeptical, but benefited from system when agency agreed to lengthen work windows | # Smarter Work Zones FHWA RESOURCES #### **SWZ Interactive Toolkit Available!** https://www.workzonesafety.org/swz/main #### Other FHWA Resources - Work Zone ITS Implementation Guide http://www.ops.fhwa.dot.gov/publications/fhwahop14008/fhwahop14008.pdf - Work Zone ITS Case Studies http://www.ops.fhwa.dot.gov/publications/fhwahop14007/ - FHWA Work Zone Mobility and Safety program website <u>http://www.ops.fhwa.dot.gov/Wz/its/index.htm</u> - Work Zone ITS Overview Webinar <u>http://www.ops.fhwa.dot.gov/wz/webinars/itsoverview013014/ullm</u> an/index.htm ## Thanks for joining us! - Upcoming Events - Webinar #3: Smarter Work Zones Corridor-Based Coordination - Thursday, October 15, 2015 Time: TBA - Webinar #4: Technology Application Showcase: Queue Warning Systems - Monday, October 26, 2015 Time: 1:00-2:30pm EDT - Regional Peer Exchanges | FHWA DFS Region | Location | Dates | |-----------------|----------------------------|-----------------------------------| | Mid-America | Des Moines, Iowa | October 22-23 | | North | Springfield, Massachusetts | October 28-29 | | South | Raleigh, North Carolina | November 5-6 | | West | Denver, Colorado | Week of November 16 th | - Check The National Work Zone Safety Information Clearinghouse website for updates - https://www.workzonesafety.org/SWZ/main - Questions or Comments? - Jawad Paracha (FHWA Operations, WZ Team) - Jawad.Paracha@dot.gov