Smarter Work Zones
Webinar Series

Webinar #6: Technology Application Case Studies: Variable Speed Limit and Dynamic Lane Merge

Todd Peterson, Josh Van Jura, and Chris Brookes

November 12, 2015
12:30-2:00pm EST
Smarter Work Zones

INTRODUCTION AND TODAY’S SPEAKERS
Today’s Speakers

Todd Peterson, P.E., PTOE
Transportation Specialist
FHWA Office of Operations

Josh Van Jura
Project Controls Engineer
Utah Department of Transportation

Chris Brookes
Work Zone Delivery Engineer
Michigan Department of Transportation
Smarter Work Zones Webinar Series

• This is the sixth in a series of bi-weekly SWZ webinars
• Topics based on what matters most to you!
• Previous Webinars include:
 – Webinar #1: A Comprehensive Overview of the SWZ Initiative (9/9/2015)
 – Webinar #2: Implementing Technology Application Solutions (9/29/2015)
 – Webinar #3: SWZ Corridor-Based Project Coordination (10/15/15)
 – Webinar #4: SWZ Technology Showcase – Queue Warning Systems (10/26/15)
 – Webinar #5: SWZ Program-Based Project Coordination (11/2/15)
• Recordings and materials for previous webinars are available on The National Work Zone Safety Information Clearinghouse website: https://www.workzonesafety.org/swz/webinars

• Coming Up:

<table>
<thead>
<tr>
<th>December</th>
<th>12/2</th>
<th>Webinar #7: Work Zone Project Coordination Guide and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/15</td>
<td></td>
<td>Webinar #8: TA/PC Showcase: Corridor Traffic Management</td>
</tr>
</tbody>
</table>
Purpose of Today’s Webinar

Provide an overview of Variable Speed Limit (VSL) and Dynamic Land Merge (DLM) and discuss real-world examples of VSL and DLM that have been used to reduce congestion or delay and ease traffic through a work zone.

Topics include:

1. **SWZ Technology Application Initiative**
 - Show how the SWZ Technology Application initiative can be used by agencies to enhance their current work zone management practices

2. **Variable Speed Limit and Dynamic Lane Merge Examples**
 - Provide real-world examples of the successful use of Variable Speed Limit and Dynamic Lane Merge, which can result in:
 - Improved Safety
 - Reduction in congestion or delay
Smarter Work Zones
SWZ OVERVIEW & TECHNOLOGY APPLICATION INITIATIVE
What are Smarter Work Zones (SWZ)?

Innovative strategies designed to optimize work zone safety and mobility

- Policies and practices used to incrementally and continuously improve WZ operations
- Tools to reduce WZ crashes and delays
- Tools to enhance WZ management strategies
Two Identified SWZ Initiatives:

Project Coordination
Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions

Technology Application
Deployment of Intelligent Transportation Systems (ITS) for dynamic management of work zone traffic impacts, such as queue and speed management

Today’s Focus of Discussion
SWZ Technology Application Goals:

Goal 1A

By December 2016, 35 State DOTs have implemented business processes for work zone ITS technologies as identified in the Work Zone ITS Implementation Guide

• What does this mean?
 – Well-documented agency policies and processes to streamline consideration and use of work zone ITS technologies to minimize traffic impacts
SWZ Technology Application Goals:

Goal 1B

By December 2016, 35 State DOTs have utilized at least one work zone ITS technology application for dynamic management of work zone impacts

- What does this mean?
 - Consideration of the six step process explained in the WZ ITS implementation guide to plan and implement ITS strategies
 - Identify and use ITS strategies such as speed and/or queue management on at least one project for dynamic management of work zone impacts
Smarter Work Zones

Overview of Variable Speed Limit & Dynamic Lane Merge
Variable Speed Limit (VSL)

- Uses sensors, portable changeable message signs (PCMS), and a processing system
- Calculates speeds limits to be displayed on PCMS based on measured speed and/or volume data
- Provides drivers with a safe speed limit to drive through a work zone and minimize braking as they approach the queue

VSL Considerations
- Advisory versus Enforceable
 - Legislative Policy (allowing enforceable VSLs)
 - Law Enforcement involvement (active vs. visibility)
- Pre-determined, fixed time VSL versus fully automated VSL
 - During active work zone (workers present)
 - Changing congestion conditions

Source: Minnesota DOT
Variable Speed Limit Benefits

• Reduction of potential crashes as drivers approach back of queue
• Reduction of congestion and ease traffic through work zone depending on current conditions
• Reduction in travel time through uniformity in traffic speeds

Source: Virginia DOT
Dynamic Lane Merge

• Uses sensors and Portable Changeable Message Signs (PCMS) placed in advanced of a lane closure
• Provides lane use instructions to drivers
 – USE BOTH LANES, TAKE YOUR TURN – MERGE HERE
• Two strategies
 – Early Lane Merge
 – Late “Zipper” Lane Merge
Early Lane Merge

• Advises drivers to move out of closed lane well before the forced merge point
• Works best when there is a low traffic volume combined with high average speeds

• Benefits:
 • Reduction of aggressive driving and unsafe merge maneuvers
 • Provide significant advanced warning to allow drivers adequate distance to merge
 • Gives positive instructions on lane usage

Source: https://www.workzonesafety.org/fhwa_wz_grant/atssa/atssa_dynamic_lane_merging

Source: Minnesota DOT
Late Lane Merge

• Advises drivers to use both lanes up to the merge point
• Works better for high traffic volumes, situations where queueing upstream of work zone is expected to occur.

• Benefits:
 • Maximize available storage upstream of work zone for reducing total queue length.
 • Reduces confusion between drivers who think they should merge early vs. drivers that use open lanes as far as possible.
 • Clarifies right-of-way at merge point ("alternate merge")

Source: https://www.workzonesafety.org/fhwa_wz_grant/atssa/atssa_dynamic_lane_merging

Source: Hallmark, Mudgal, Stout, & Wang, 2011
Smarter Work Zones

U TAH D O T S T A T E W I D E V S L D E P L O Y M E N T
Example #1: Utah Variable Speed Limits in Work Zones – Where Are We and Where We Are Going

• Goal: Improve safety for the construction personnel and traveling public within construction work zones through significant reduction in traveler speed within the boundary of Active Work Zone.
Concerns

• Traffic Queueing
 – Preliminary traffic modeling predicted no queueing
 – 1800 vehicle/hour/lane and relatively flat = Low risk

• Speed Harmonization
 – Little concern until deviation greater than 15 mph from median speed

• Enforcement
 – System logs time that speed changed
 – Document location of device
Current Projects

- I-70 Slab Replacement
- Pine Creek Climbing Lane
- Beaver Ridge Climbing Lane
- Spotted Wolf
- R4 Maintenance Project

Source: Utah DOT
Success Stories

• Beaver Ridge Climbing Lane
 – Original Posted 80 mph
 – Drop to 65 at front of work zone
 • 85th percentile of 67 mph and 70 mph
 – 45mph allowed structure work
 • 85th percentile of 51 mph
 – Speed Harmonization +/- 12 mph
Variable Speed Limit (VSL): Where We Are Going

- FHWA Accelerated Innovation Deployment (AID) Grant
 - Submitted May 2014
 - $775,000 AID Grant Awarded December 2014
- RFP early Spring 2015
- Kimley-Horn NTP June 2015
 - Avenue Consulting
Project Objectives

• Develop a portable and dynamic system
• Test on 2 projects in 2016
• Evaluate results/Revise requirements
• Test on 2 projects in 2017
• Bid into future projects
<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Objective</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD</td>
<td>Safety</td>
<td>Safer for field personnel</td>
<td>• Limits exposure to workers for making VSL adjustments (i.e., limits need to go to each VSL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Speed in work space</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Speed compliance within the work space when field personnel are present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Worker satisfaction</td>
</tr>
<tr>
<td>Ease of</td>
<td>Ease of</td>
<td>Ease of deployment and operation</td>
<td>• Time it takes to set up, adjust, or shift the system in a work zone</td>
</tr>
<tr>
<td>Use</td>
<td>Use</td>
<td></td>
<td>• Time it takes to learn how to operate the Portable VSL (PVSL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cost of the system (labor hours and renting devices)</td>
</tr>
</tbody>
</table>
Goals, Objectives, and Performance Measures (2 of 2)

<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Objective</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLIC Safety</td>
<td>Safer for public</td>
<td>• Number of crashes</td>
<td></td>
</tr>
<tr>
<td>Public Trust</td>
<td>Posted speeds comply with</td>
<td>• Customer satisfaction</td>
<td>All measures below are measured within the work space:</td>
</tr>
<tr>
<td></td>
<td>work activity</td>
<td></td>
<td>• Speed compliance when workers are present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Percent of drivers that encounter reduced speed limits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The length (distance) for which the speed is reduced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Delay (time it takes to transverse the work space) for when a driver encounters reduced speed limits</td>
</tr>
<tr>
<td></td>
<td>Increased and reliable</td>
<td>• Travel time through the work space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information</td>
<td>• Uptime of system</td>
<td></td>
</tr>
<tr>
<td>Easy to use</td>
<td>Easy for public to understand</td>
<td>• Speed variation</td>
<td></td>
</tr>
</tbody>
</table>
Needs and Wants of a Portable VSL System

• Needs:
 – Adjust speed limits based on detected speeds/queue
 – Provide real-time detection for traffic speed and occupancy (queue):
 • Through ACTIVE work space
 • In advance of the work space
 – Provide advanced notification to drivers about Variable Speed Limits
 – Provide travel time or traffic delay through the work zone

• Wants:
 – Provide surveillance/monitoring capability at the work zone
 – Provide real-time weather detection
Systems Engineering Process

• Concept of Operations (Con Ops) Phase
 – Goals/Objectives/Performance Measures
 – Operational Parameters and Limits
 – Stakeholder Roles and Responsibilities Matrix
 – Operational Scenarios
 – User and System Needs
Parameters and Limits

• Speeds
 – Increments
 – Frequency of posted speed changes
 – Set work zone speed limit based on prevailing conditions

• Spacing
 – Between VSL signs and advanced warning signs

• Variable Message Signs (VMS) Communications
 – Maximum distance away from active work zone to display travel time?
Special Provisions for VSL (1 of 2)

Reduced Speed Work Zone Signing

Notes:
1. Use the pre-construction posted speed limit prior to work zone to compute the sign spacing, taper length, buffer zone, and work clear zone distance. Use the posted speed limit during work to determine the tangent spacing for channelizing devices.
2. Restore pre-construction posted speed limit on VSL equipment and or remove or cover all static work zone reduced speed limit assemblies (RS-1a) and the work zone reduced speed limit ahead (WZA) series signs when no one is working. Except as approved by the regional traffic engineer, do not cover pre-construction posted speed limit assemblies (RS-1a).
3. Additional signs may be used in the work zone for supplemental notification of the work zone speed limits.
4. Place arrow board on shoulder when available. Place arrow board in first 1/3 of taper in the closed lane when no adequate shoulder is available.
5. Use shoulder taper when arrow board is placed on shoulder.
6. Use supplemental left side signing for high-speed divided highways.
7. See to 4d series std dwg for sign design and layout.
8. Fines double (RS-2d) and fines double with fine notification (RS-2d) signs may be used interchangeably.
9. Place additional work zone speed limit assemblies (RS-2d), fines double (RS-2d), and/or fines double with fine notification (RS-2d) signs at all major intersections and interchanges within the project when reduced speeds and/or the fines double or the fines double with fine notification signing option is used.

PCMS: Message Chart

- Phase 1: XX MPH Speed Ahead
- Phase 2: XX** feet

See notes 3, 7, 8

Notes Only - Not to Scale - Setup to Be Set Specific
Special Provisions for VSL (2 of 2)

1. Use the pre-construction posted speed limit prior to work zone to compute the sign spacing, taper length, buffer zone, and work clear zone distance. Use the posted speed limit during work to determine the tangent spacing for channelizing devices.

2. Restore pre-construction posted speed limit on PVS, equipment and or remove or cover all VSL short duration work zone reduced speed limit assemblies (RS6-1a) and the work zone reduced speed limit ahead (WSH-5 series) signs when no one is working, except as approved by the regional traffic engineer. Do not cover pre-construction posted speed limit assemblies (RS2-1).

3. Additional signs may be used in the work zone for supplemental notification of the work zone speed limits.

4. See TC 4D series STD DWG for sign design and layout.

5. Finishes double (RS2-40) and finishes double with fine notification (RS2-40) signs may be used interchangably.

6. Place additional work zone speed limit assemblies (WSH-1) on the fines double (RS2-40) and/or finishes double with fine notification (RS2-40) signs at all major intersections and interchanges within the project when reduced speeds and/or the fines double or the fines double with fine notification signing option is used.

7. Move WS2-6, portable changeable message sign, variable speed limit signs along with the work space.
Portable VSL Candidate Projects

• Primary Candidate Projects:
 – 4 lane divided/ 3 or 4 lane undivided roads
 • Single or dual lane closure
 – High speed (50 mph +)
 – Project with simple geometries
 – Example
 • Roadway resurfacing
 • Slab replacement
 • Patching
Future Portable VSL Considerations

• Anticipate broadening the circumstances where the system will be deployed
 – Only doing the pilot on these “parameters” for now
• Parameters not in 1st deployment:
 – Higher volume roadways
 – Higher profile roadways (political attention)
 – Variable characteristics (curvature, sight distance, proximity to signals, access, etc.)
Technologies

- Portable VSL (PSVL) Signs
- Portable Variable Message Sign (PVMS)
- Mainline detection by lane
- Wireless communication
- RWIS and CCTV – not included
Typical VSL Signage
Typical VSL Downstream Set Up

Wireless radio and detection needed if end of taper to VSL in advance of work space distance is ≥ 1/2 mile

SPEED LIMIT

XX

OR

SPEED LIMIT

XX

VMS MESSAGE

SPEED LIMIT

XX

VARIABLE SPEED ZONE AHEAD

OR

OR

1

2

3

4

5

6

A = 1000 FT

1,150 FT

= ½ WORK SPACE

= 1,150 FT
For More Information:

Josh Van Jura
Utah DOT
jvanjura@utah.gov
Smarter Work Zones

MICHIGAN DOT LATE “ZIPPER” LANE MERGE
Traditional Lane Merge

• Vehicles queue in a single file line
• Road users experience long queues and frustration/confusion when capacity is exceeded

Source: Michigan DOT
Late “Zipper” Lane Merge Concerns

- Driver confusion and steep learning curve
- Frustration at the merge point
- Increased motorist delay
Recent Projects – I-96 Concrete Joint Repairs

• Construction May to September 2014
I-96 Concrete Joint Repairs

- Tried various mitigation measures during construction
 - Weekend lane closures
 - Additional alternate route messaging
 - Active work at night; curing during the day
 - Late “Zipper” Lane Merge
Late “Zipper” Lane Merge Signing

- Utilized 3 Portable Changeable Message Signs (PCMS) in each direction and a special fabrication sign

Source: Michigan DOT
Media Outreach for Zipper Lane Merge

- Grand Rapids area media covered use zipper merge on I-96
- Lansing area media decided not to cover the story
Late “Zipper” Lane Merge Capacity Performance

• Capacity was increased when using a zipper lane merge
 – Traffic utilized both lanes

Source: Minnesota DOT
Late “Zipper” Lane Merge Queue Reduction (1 of 2)

- Eastbound queues were reduced

Traditional Lane Merge – Weekend Closure

Queue Length: ~ 10 miles

Traditional Lane Merge – Weekday Closure

Queue Length: ~ 5 miles

Zipper Lane Merge

Queue Length: < 2 miles
Late “Zipper” Lane Merge Queue Reduction (2 of 2)

- Westbound queues were reduced

Traditional Lane Merge – Weekend Closure

Queue Length :~ 10 miles

Traditional Lane Merge – Weekday Closure

Queue Length :~ 7 miles

Zipper Lane Merge

Queue Length: 0 miles in PM
Late “Zipper” Lane Merge Delays – Eastbound

- Eastbound delays were reduced from 24 minutes to 3 minutes
Late “Zipper” Lane Merge Delays – Westbound

- Westbound delays were reduced slightly
Recent Projects: I-196 Bridge Work

- Lane closures were limited to nights and weekends
Eastbound I-196 Traditional Weekend Lane Closures

• Experienced peak delays of 5-10 minutes
Eastbound I-196 Weekend Zipper Lane Merge

- Delays increased by 2 minutes
Modifications for Weekend #2 of Work

- Reduced signing from one location on each side of road
Eastbound I-196 2nd Weekend Zipper Lane Merge

- Delays increased by another 2-3 minutes
Modifications for Weekend #3 of Work

- Created a new special fabrication sign
- Media picked up the story and ran a feature story including “how-to” graphics

Source: Michigan DOT
Eastbound I-196 3rd Weekend Zipper Lane Merge

• Delays were 1-3 minutes lower than traditional lane merge
Westbound I-196 Queues

- Reduced by $\frac{1}{2}$ mile to 1 mile
Late “Zipper” Merge Benefits

• Reduced speed differential between the two open lanes in advance of the lane closure
• Reduced frustration by creating a sense of fairness
• Reduction in queue lengths
• Reduction in work zone delays
For More Information:

Chris Brookes
Michigan DOT
brookesc@michigan.gov
Smarter Work Zones

MARYLAND DYNAMIC LANE MERGE
Maryland DLM Test Deployment

- Maryland SHA / University of Maryland partnership
- Test bed I-83 north of Baltimore
 - Four-lane divided freeway
 - 61,140 ADT (2014)
 - Southbound only work zone
 - Right lane closure
System Configuration

- Right lane closed 0.5 mile
- Flashing arrow panel
- Merge here
- Take your turn
- Use both lanes

- 0.1 mile
- 0.1 mile
- 0.5 mile
- 0.5 mile
- 0.1 mile
- 1.0 mile
- 1.5 mile

BWA 1
BWA 2
BWA 3
BWA 4

PCMS 1
PCMS 2
PCMS 3
PCMS 4

- Use both lanes
- Traffic backup
- Use both lanes
- Road work 0.5 mile
- Right lane closed 0.5 mile
- Road work 1 mile

I-83 SB

Every Day Counts

62
Operation – Low Volume

• “All On – All Off” algorithm.
• If all occupancies are below 5%, all PCMS are deactivated.
Operation – High Volume

• If any occupancy among the sensors is over 15%, all PCMSs are activated.
Evaluation - Methodology

• Manual data collection
 – Work zone throughputs, lane volume distributions, and queues
 – Obtained for no-control baseline and during DLM operation

• Simulation calibrated to no-control baseline conditions

• Simulated no-control throughput & queues based on upstream volumes measures during DLM operation
Evaluation - Results

- Throughput

<table>
<thead>
<tr>
<th>Day</th>
<th>Simulation throughput (No control)</th>
<th>Manual counted throughput (DLM)</th>
<th>Percent Increased</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1375</td>
<td>1814</td>
<td>14%</td>
</tr>
<tr>
<td>2</td>
<td>1476</td>
<td>1928</td>
<td>14%</td>
</tr>
<tr>
<td>3</td>
<td>1450</td>
<td>1883</td>
<td>9%</td>
</tr>
<tr>
<td>4</td>
<td>1390</td>
<td>1987</td>
<td>34%</td>
</tr>
</tbody>
</table>
Evaluation - Results

- Maximum Queue Lengths

<table>
<thead>
<tr>
<th>Day</th>
<th>Simulated Queue (No control)</th>
<th>Actual Queue (DLM)</th>
<th>Percent Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3 miles</td>
<td>1.2 miles</td>
<td>8.3%</td>
</tr>
<tr>
<td>2</td>
<td>1.4 miles</td>
<td>1.2 miles</td>
<td>16.7%</td>
</tr>
<tr>
<td>3</td>
<td>2.0 miles</td>
<td>1.8 miles</td>
<td>11.1%</td>
</tr>
<tr>
<td>4</td>
<td>1.2 miles</td>
<td>0.9 miles</td>
<td>33.3%</td>
</tr>
</tbody>
</table>
Evaluation - Results

- Lane Volume Distribution

No control ➔ not uniform lane distribution

DLM control ➔ more uniform lane distribution
SWZ Interactive Toolkit Available!

https://www.workzonesafety.org/swz/main
FHWA Work Zone ITS Implementation Guide

- Step 1 – Assessment of Needs
- Step 2 – Concept of Operations
- Step 3 – Detailed System Planning
- Step 4 – Procurement
- Step 5 – System Deployment
- Step 6 – System Operation, Maintenance, and Evaluation
Other Resources

- Work Zone ITS Case Studies

- FHWA Work Zone Mobility and Safety program website
 http://www.ops.fhwa.dot.gov/Wz/its/index.htm

- Work Zone ITS Overview Webinar

- Variable Speed Limits in Work Zones – Summary of Uses and Benefits

- Dynamic Merge Systems in Work Zones – Summary of Uses and Benefits

- ATSSA Guidance for the Use of Dynamic Lane Merge Strategies
 https://www.workzonesafety.org/fhwa_wz_grant/atssa/atssa_dynamic_lane_merging
Thanks for joining us!

- **Upcoming Events**
 - **Webinar #7**: Smarter Work Zones – Program-Based Project Coordination
 - Wednesday, December 2, 2015, 2:00-3:30pm EST
 - Registration: https://connectdot.connectsolutions.com/e5u8oboez7z/event/event_info.html
 - **Webinar #8**: Project Coordination/Technology Application Showcase
 - Tuesday, December 15, 2015, 1:00-2:30pm EST
 - **Regional Peer Exchanges**

<table>
<thead>
<tr>
<th>FHWA DFS Region</th>
<th>Location</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-America</td>
<td>Des Moines, Iowa</td>
<td>October 22-23</td>
</tr>
<tr>
<td>North</td>
<td>Springfield, Massachusetts</td>
<td>October 28-29</td>
</tr>
<tr>
<td>South</td>
<td>Raleigh, North Carolina</td>
<td>November 5-6</td>
</tr>
<tr>
<td>West</td>
<td>Denver, Colorado</td>
<td>November 17-18</td>
</tr>
</tbody>
</table>

- Check The National Work Zone Safety Information Clearinghouse website for updates https://www.workzonesafety.org/SWZ/main

- **Questions or Comments?**
 - Jawad Paracha (FHWA Operations, Program Manager WZ Team) Jawad.Paracha@dot.gov
For more information from our presenters:

- Todd Peterson, FHWA Office of Operations
todd.peterson@dot.gov

- Josh Van Jura, Utah DOT
jvanjura@utah.gov

- Chris Brookes, Michigan DOT
brookesc@michigan.gov