Smarter Work Zones
Webinar Series

Webinar #7: Work Zone Project Coordination Guide and Examples

Martha Kapitanov, Gerald (Jerry) Ullman, Murdo M. Nicolson, Jr. and Chip Eitzel

December 2, 2015 2:00-3:30pm EST
Smarter Work Zones
INTRODUCTION AND TODAY’S SPEAKERS
Today’s Speakers

Martha C. Kapitanov
Transportation Specialist
FHWA Office of Operations

Gerald (Jerry) Ullman, Ph.D., P.E.
Senior Research Engineer
Texas A&M Transportation Institute

Murdo M. Nicolson, Jr.
Associate Engineer
City of Palo Alto, California

Chip Eitzel
Partner
Geodesy
Smarter Work Zones Webinar Series

• This is the seventh in a series of bi-weekly SWZ webinars
• Topics based on what matters most to you!
• Previous Webinars include:
 – Webinar #1: A Comprehensive Overview of the SWZ Initiative (9/9/2015)
 – Webinar #2: Implementing Technology Application Solutions (9/29/2015)
 – Webinar #3: SWZ Corridor-Based Project Coordination (10/15/15)
 – Webinar #4: SWZ Technology Showcase – Queue Warning Systems (10/26/15)
 – Webinar #5: SWZ Program-Based Project Coordination (11/2/15)
 – Webinar #6: Technology Application Case Studies: Variable Speed Limit and Dynamic Lane Merge (11/12/15)
• Recordings and materials for previous webinars are available on The National Work Zone Safety Information Clearinghouse website: https://www.workzonesafety.org/swz/webinars
• Coming Up:

<table>
<thead>
<tr>
<th>December 2015</th>
<th>12/15</th>
<th>Webinar #8: Integrating Project Coordination and Technology Applications – Iowa DOT</th>
</tr>
</thead>
</table>
Purpose of Today’s Webinar

Provide a comprehensive overview of the Project Coordination Guide and discuss real-world examples of successful SWZ project coordination strategies.

Topics include:

1. SWZ Project Coordination Initiative
 – Show how the SWZ Project Coordination initiative can be used by agencies to enhance their current work zone management practices

2. Project Coordination Guide
 – Review key concepts of road project coordination including dimensions and challenges of road project coordination

3. Project Coordination Examples
 – Provide real-world examples of successful SWZ project coordination strategies which resulted in:
 • Minimized travel delays
 • Enhanced safety for all road users and workers
 • Maintenance of business and resident access
What are Smarter Work Zones (SWZ)?

Innovative strategies designed to optimize work zone safety and mobility

- Policies and practices used to incrementally and continuously improve WZ operations
- Tools to reduce WZ crashes and delays
- Tools to enhance WZ management strategies
Two Identified SWZ Initiatives:

Project Coordination

Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions

Today’s Focus of Discussion

Technology Application

Deployment of Intelligent Transportation Systems (ITS) for dynamic management of work zone traffic impacts, such as queue and speed management
Project Coordination – What is it?

Coordination within a single project and/or among multiple projects within a corridor, network, or region, and possibly across agency jurisdictions to minimize work zone traffic impacts.

Benefits:

- **For transportation agencies include:**
 - Ability to reduce and manage traffic disruptions from road work
 - Earlier identification of project impacts
 - Dynamic adjustments to schedule
 - Improved communications within and cross agencies
 - Cost savings

- **From the driver’s perspective:**
 - Fewer numbers of work zones and street cuts
 - Better quality road surfaces
 - Increased customer satisfaction

Source: FHWA
SWZ Project Coordination Goals:

Goal 1

By December 2016, 25 State DOTs have incorporated work zone project coordination strategies into agency documentation and business processes.

What does this mean?

• Review of:
 o Existing PC-related policies/practices to identify strengths and weaknesses
 o Other agencies’ PC-related best practices
• Identify and implement of SWZ PC strategies
• Develop agency documentation and business processes
SWZ Project Coordination Goals:

Goal 2

By December 2016, 5 State DOTs have volunteered to pilot the Work Zone Implementation Strategies Estimator (WISE) software.

What does this mean?

• Use WISE tool to optimize project schedules and analyze mitigation strategies to minimize work zone traffic impacts
• Pilot, evaluate, suggest enhancements, and demonstrate WISE’s value for work zone management
Smarter Work Zones

PROJECT COORDINATION GUIDE
Project Coordination Challenges

• Establishing and maintaining accurate information about project schedules, plans, day-to-day activities

• Effects on individual project schedules

• Quantifying the benefits of coordination, or the negative effects if a lack of coordination

• Institutional constraints regarding the availability of funds and when those funds must be spent

• Agency missions and charters with respect to routes of responsibility, stakeholders, and users
Dimensions of Project Coordination

Who is involved?

What does it accomplish?

When can or should it occur?
Examples

<table>
<thead>
<tr>
<th>Agencies Involved</th>
<th>Phase at Which Coordination is Occurring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Planning/Design</td>
</tr>
<tr>
<td>Multiple</td>
<td>Planning/Design</td>
</tr>
</tbody>
</table>
Examples of Possible Activities

<table>
<thead>
<tr>
<th>Agencies Involved</th>
<th>Phase at Which Coordination is Occurring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Planning/Design</td>
</tr>
<tr>
<td></td>
<td>• Developing a database of agency planned projects over next 3-5 years</td>
</tr>
<tr>
<td></td>
<td>• Developing a map showing project locations in the region, possibly color-coded to illustrate current, near-term, and long-term schedules</td>
</tr>
<tr>
<td></td>
<td>• Determining the sequence of the projects that will minimize total delays and disruptions to the traveling public in the corridor or region (i.e., WISE tool)</td>
</tr>
<tr>
<td>Multiple</td>
<td>Operations</td>
</tr>
</tbody>
</table>
Examples of Possible Activities (cont’d)

<table>
<thead>
<tr>
<th>Agencies Involved</th>
<th>Phase at Which Coordination is Occurring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Planning/Design</td>
</tr>
<tr>
<td></td>
<td>- Developing a database of agency planned projects over next 3-5 years</td>
</tr>
<tr>
<td></td>
<td>- Developing a map showing project locations in the region, possibly color-coded to illustrate current, near-term, and long-term schedules</td>
</tr>
<tr>
<td></td>
<td>- Determining the sequence of the projects that will minimize total delays and disruptions to the traveling public in the corridor or region (i.e., WISE tool)</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
</tr>
<tr>
<td></td>
<td>- Implementing a regional transportation management plan encompassing multiple agency projects</td>
</tr>
<tr>
<td></td>
<td>- Conducting regular coordination meetings between staff of simultaneous projects in a corridor or region to eliminate potential lane closure conflicts, combine compatible lane closures into a single coordinated lane closure where possible, etc.</td>
</tr>
<tr>
<td></td>
<td>- Establishing business processes to coordinate agency maintenance activities with nearby construction project efforts when possible</td>
</tr>
<tr>
<td></td>
<td>- Linking an agency’s lane closure permitting approvals with agency construction and maintenance coordination efforts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiple</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples of Possible Activities (cont’d)

<table>
<thead>
<tr>
<th>Agencies Involved</th>
<th>Planning/Design</th>
<th>Operations</th>
</tr>
</thead>
</table>
| **Single** | - Developing a database of agency planned projects over next 3-5 years
| | - Developing a map showing project locations in the region, possibly color-coded to illustrate current, near-term, and long-term schedules
| | - Determining the sequence of the projects that will minimize total delays and disruptions to the traveling public in the corridor or region (i.e., WISE tool) | - Implementing a regional transportation management plan encompassing multiple agency projects
| | - Linking an agency’s lane closure permitting approvals with agency construction and maintenance coordination efforts | - Conducting regular coordination meetings between staff of simultaneous projects in a corridor or region to eliminate potential lane closure conflicts, combine compatible lane closures into a single coordinated lane closure where possible, etc.
| | - Establishing business processes to coordinate agency maintenance activities with nearby construction project efforts when possible | - Linking an agency’s lane closure permitting approvals with agency construction and maintenance coordination efforts |
| **Multiple** | - Expand project database and mapping tool to include other agencies in region, utility companies, and private-sector developer projects
| | - Establish a web-based approach to sharing and providing appropriate access to the database and map |
Examples of Possible Activities (cont’d)

<table>
<thead>
<tr>
<th>Agencies Involved</th>
<th>Phase at Which Coordination is Occurring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planning/Design</td>
</tr>
<tr>
<td>Single</td>
<td>• Developing a database of agency planned projects over next 3-5 years</td>
</tr>
<tr>
<td></td>
<td>• Developing a map showing project locations in the region, possibly color-coded to illustrate current, near-term, and long-term schedules</td>
</tr>
<tr>
<td></td>
<td>• Determining the sequence of the projects that will minimize total delays and disruptions to the traveling public in the corridor or region (i.e., WISE tool)</td>
</tr>
<tr>
<td></td>
<td>• Implementing a regional transportation management plan that considers and addresses projects being performed by all agencies and other stakeholders in the region</td>
</tr>
<tr>
<td>Multiple</td>
<td>• Expand project database and mapping tool to include other agencies in region, utility companies, and private-sector developer projects</td>
</tr>
<tr>
<td></td>
<td>• Establish a web-based approach to sharing and providing appropriate access to the database and map</td>
</tr>
</tbody>
</table>
Five Steps for Achieving Project Coordination

1. Establishing the Project Coordination Vision
2. Developing Details of How Coordination will Occur
3. Educating and Informing Personnel and Stakeholders
4. Implementing the Project Coordination Process
5. Refining the Process
Step 1: Establish the Vision

- Get support by upper management
- Develop Memorandums of Understanding (MOUs)
- Develop a coordination committee
Step 2: Develop Details of How Coordination will Occur

- Identify data needed to allow coordination to occur
- Obtain tools committee needs to plan, monitor, manage coordination
 - Database software
 - Mapping
 - Traffic impact analyses
 - Scheduling
- Establish decision-making process for how PC vision will be achieved amongst stakeholders
Step 3: Educate and Inform Personnel and Stakeholders

• Provide reasons for and benefits to be gained by coordination
• Provide information on the decision-making process that will be followed
Step 4: Implement the Process

- Conduct regular coordination meetings to track progress of projects
- Regularly update the project database and tracking/monitoring/analysis tools
Step 5: Refine the Process

• Updates and changes to the process may be fairly frequent initially
• Changes decrease over time as process becomes institutionalized
Example #1: Texas DOT (TxDOT)

- Example of single agency project coordination during operational phase of work
- I-35 Corridor
 - 17 projects
 - 96 miles
- Nighttime lane and/or full freeway closures possible in each project
- Ramp, frontage road, and driveway closures also possible

Source: TxDOT
Steps for Achieving Project Coordination – Texas DOT (TxDOT) (1 of 3)

• Step 1: Establishing the Vision
 – TxDOT upper management directives to manage cumulative impacts to through travelers, as well as local resident and business inconveniences
 – Coordination between projects and with multiple contractors
 – Establishing a 30-minute cumulative delay threshold

• Step 2: Develop How Coordination will Occur
 – Creation of mobility coordinator positions within the corridor
 – Creation of data collection, analysis processes to estimate anticipated cumulative impacts
 – Encouraging cooperative collaboration between contractors
Closure Impact Assessment Report

Construction on I-35
Southbound
Full-Lane Closure
From: At FM 436, Bell (Mile Marker: 293.0)
To: At Tahuaya Rd, Bell (Mile Marker: 289.0)
As of 3/28/2015

Closure ID: 2822
Last Modified: 3/28/2015 5:17:35 PM by d-middleton@tamu.edu
Planned Start Time: 4/1/2015 07:00 PM
Planned End Time: 4/2/2015 07:00 AM
Duration: Nightly
Number of Main Lanes: 2
Lane(s) Closed: Left Lane; Right Lane
Closure Length: 4.0 mi.

Date: Wednesday, 4/1/2015
Maximum Queue Length
- Expected: 1.3 mi.
- Worse Case*: 3.7 mi.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Expected Queue (mi)</th>
<th>Expected Delay (min/veh)</th>
<th>Worse Case* Queue (mi)</th>
<th>Worse Case* Delay (min/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 PM</td>
<td>08:00 PM</td>
<td>0.9</td>
<td>8.0</td>
<td>1.7</td>
<td>13.7</td>
</tr>
<tr>
<td>08:00 PM</td>
<td>09:00 PM</td>
<td>1.0</td>
<td>9.1</td>
<td>2.6</td>
<td>19.7</td>
</tr>
<tr>
<td>09:00 PM</td>
<td>10:00 PM</td>
<td>1.3</td>
<td>10.8</td>
<td>3.5</td>
<td>26.8</td>
</tr>
<tr>
<td>10:00 PM</td>
<td>11:00 PM</td>
<td>0.9</td>
<td>9.1</td>
<td>3.7</td>
<td>30.5</td>
</tr>
<tr>
<td>11:00 PM</td>
<td>12:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>29.3</td>
</tr>
<tr>
<td>12:00 AM</td>
<td>01:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
<td>25.5</td>
</tr>
<tr>
<td>01:00 AM</td>
<td>02:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>19.4</td>
</tr>
<tr>
<td>02:00 AM</td>
<td>03:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>11.2</td>
</tr>
<tr>
<td>03:00 AM</td>
<td>04:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04:00 AM</td>
<td>05:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05:00 AM</td>
<td>06:00 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>4.1</td>
</tr>
<tr>
<td>06:00 AM</td>
<td>07:00 AM</td>
<td>0.6</td>
<td>6.6</td>
<td>1.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

* Worse case analyses are based on volumes 10% higher than expected and a work zone capacity 10% lower than expected.
Steps for Achieving Project Coordination – Texas DOT (TxDOT) (2 of 3)

• Step 3: Educate/Inform Personnel and Stakeholders
 – Mobility coordinators participation in weekly project meetings
 – Outreach to local communities and key stakeholder groups

• Step 4: Implement the Process
 – Regular presentations to city councils, shipping companies, local community meetings, etc.
 – One-on-one contact with businesses prior to major access disruptions
 – Cooperative resolution of multiple lane closure nights when excessive cumulative delays anticipated
Steps for Achieving Project Coordination – Texas DOT (TxDOT) (3 of 3)

• Step 5: Refine the Process
 – Initial hesitancy to changes in lane closure schedules
 – Cooperation increased as trust between mobility coordinator and contractors increased
Example #2: Oregon (ODOT)

- Single agency project coordination during planning phase of work
- Historic bridge repair and replacement effort
 - Over 300 bridges statewide
 - Five regions
 - Eight years
 - $1.3 billion

Source: Oregon DOT
Steps for Achieving Project Coordination – Oregon DOT (ODOT) (1 of 5)

• Step 1: Establishing the Vision
 – Top management directive to agency
 – Establish coordinating committee (construction, maintenance, design, operations, traffic, contracting, PI)
 • Key decision makers in each group
 • Authority to speak for their group
 – Develop overall guide and associated memorandums
Steps for Achieving Project Coordination – Oregon DOT (ODOT) (2 of 5)

• Step 2: Develop How Coordination will Occur
 – Identified what needed to be managed in the work zones
 • Travel Times
 • Traffic Volumes/Capacity
 • Load Sizes/Hole in the Air
 – Develop tools to plan, manage and monitor
 – Develop guidance
 • Corridor-level or statewide transportation management plans (TMPs)
 • Project-level TMP guidance document used when developing individual project TMPs
 • Acceptable delay thresholds across various route segments
 • Delay estimation tools, lane closure charts to maintain near free-flow conditions
Step 3: Educate and Inform Personnel/Stakeholders

- Agency staff
 - Know what is expected
 - Know what to do
 - Re-educate for updates and staff turnover
- Stakeholders participation
 - Understand what to expect
 - Share their perspective
- Train
 - Importance of and how to use of tools
 - Importance of and how to develop project-Level TMPs
Steps for Achieving Project Coordination – Oregon DOT (ODOT) (4 of 5)

• Step 4: Implement the Process
 – Tools
 – TMPs
 – Coordination Meetings
 • Sharing information on process updates
 • Sharing project information between affected stakeholders (project scope, schedules)
 • Identify conflicts
 • Work to resolve conflicts
 – Escalation Process
 – Tracking Projects through their lives
 • Long term plans: general traffic impacts and schedule as known
 • Nearer term plans: refined traffic impacts/staging and schedule
 • Short term and current construction
Steps for Achieving Project Coordination – Oregon DOT (ODOT) (5 of 5)

• Step 5: Refine the Process
 – Early on: from overall committee and technical subcommittees
 – During training: challenges and issues identified by participants
 – During implementation: as unusual conflicts/challenges arose
For more information:

Gerald (Jerry) Ullman
Texas A&M Transportation Institute
G-Ullman@tti.tamu.edu
Smarter Work Zones
CITY OF PALO ALTO WORK ZONE
PROJECT COORDINATION
Example #3: City of Palo Alto – Project Coordination Tool

• Palo Alto Background
 – Located in Silicon Valley south of San Francisco
 – ~66,000 residents with a daytime population of >100,000
 – 198.4 miles of streets in 2,158 pavement sections
 – Geographic Information System (GIS) based project coordination first used in 1996
GIS as the Authoritative Database (1 of 2)

- Started in 1987
- Based on high-resolution orthophotos tied to a survey network
- Parcels entered using Coordinate Geometry (COGO)
GIS as the Authoritative Database (2 of 2)

- 673 feature classes supporting Utilities and Public Works Engineering and Operations, Planning, etc.
Goals

- Regional goal: have the best Pavement Condition Index (PCI)
- Local goal: PCI average of 85 with no section under 60 by 2019
- Minimize waste and reduce citizen inconvenience
- Avoid trenches in new pavement

Source: Metropolitan Transportation Commission
Approach

• Survey and inspect city infrastructure, analyze, and prioritize maintenance via pavement management software (GIS and StreetSaver)

• Use Project Coordinator to find potential conflicts and hold monthly meetings to resolve them

• Toughen regulations: no trench fee if project is coordinated. Otherwise, charge higher fees to meet increased restoration standards

• Triple the funding through 2021

• Trench fees are based on existing PCI scores

• Coordinate during construction
Track Unplanned Incursions

- Main leaks and collapses, valve repair, customer initiated projects, etc.
- Tracking these incursions aid in identifying candidates for enhanced or accelerated maintenance
Stakeholders

• Internal
 – Sidewalks (Public Works Engineering Department)
 – Storm Drain (Public Works Engineering Department)
 – Pavement (Public Works Engineering Department)
 – PW Ops (Public Works Operations Department)
 – Transport (Transportation/Planning Department)
 – Gas (Water, Gas, Wastewater Engineering Department)
 – Water (Water, Gas, Wastewater Engineering Department)
 – Wastewater (Water, Gas, Wastewater Engineering Department)
 – WGW Ops (Water, Gas, Wastewater Operations Department)
 – Electric (Electrical Engineering/Operations Department)
 – Parks/Open Spaces (Associated Services Department)

• External
 – Pacific Gas and Electric (PG&E)
 – Santa Clara County Roads Division
 – Caltrans (State of California highway, bridge, and rail)
 – Caltrain (commuter rail between San Francisco and San Mateo and Santa Clara counties)
 – Cable companies
 – Contractors
 – Citizens
Project Coordinator’s Foundational Concepts

• A pavement section is based on a single-block road centerline
• A project represents all the centerline segments acted on for a single discipline in a single year
• Data entry is kept as simple as possible
• A broad conflict definition: any work planned on a road centerline segment (a block) within a given number of years of a paving project is considered a potential conflict
• Data is stored in a Relational Database Management System (RDBMS) and Structured Query Language (SQL) is used for analysis
• Feature class definitions, user authorizations, and app capabilities are all metadata driven
Street Project Data Entry

- App configuration set at startup based on user: discipline and project year are set, optional start and end dates may be set
- Click on road centerline segments to add or remove them from the project

Source: Geodesy
Street Project Data Entry

• App configuration set at startup based on user: discipline and project year are set, optional start and end dates may be set

• Click on road centerline segments to add or remove them from the project

Source: Geodesy
Street Project Data Entry

- App configuration set at startup based on user: discipline and project year are set, optional start and end dates may be set
- Click on road centerline segments to add or remove them from the project

Source: Geodesy
Street Project Data Entry

• App configuration set at startup based on user: discipline and project year are set, optional start and end dates may be set

• Click on road centerline segments to add or remove them from the project

Source: Geodesy
Street Project Review

- Check for potential conflicts
- 5-year Pavement Capital Improvement Projects (CIP)
- 5-year Pavement CIP with Utility projects
Street Project Review

- Check for potential conflicts
- 5-year Pavement Capital Improvement Projects (CIP)
- 5-year Pavement CIP with Utility projects

Source: Geodesy
Street Project Review

- Check for potential conflicts
- 5-year Pavement Capital Improvement Projects (CIP)
- 5-year Pavement CIP with Utility projects
Street Project Review

- Check for potential conflicts
- 5-year Pavement Capital Improvement Projects (CIP)
- 5-year Pavement CIP with Utility projects

Source: Geodesy
Street Project Review

- Check for potential conflicts
- 5-year Pavement Capital Improvement Projects (CIP)
- 5-year Pavement CIP with Utility projects

Source: Geodesy
Street Project Data Model

- A single authoritative database is used to store all data
- Projects are stored in a single table and related to road centerlines in another table
- Every edit is logged and the changed records are stored in a history table
- User authorities are managed through subclassed views

Source: City of Palo Alto
Output – Maps and Reports

- Single line (centerline) and double line (road edge) maps displaying a single year’s project or a 5-year CIP suitable for submission to City Council
- A map of potential conflicts
- Tabular conflicts and project reports (Excel)
Other Internal Uses of Project Data

- Pavement data
- Utilities detail vs 2015 overlay
- Traffic signal loops vs 2015 overlay

Source: Geodesy
Other Internal Uses of Project Data

- Pavement data
- Utilities detail vs 2015 overlay
- Traffic signal loops vs 2015 overlay

Source: Geodesy
Other Internal Uses of Project Data

- Pavement data
- Utilities detail vs 2015 overlay
- Traffic signal loops vs 2015 overlay

Source: Geodesy
Coordination During Construction

Contract Special Provisions:

• Contractor shall coordinate his activities with the WGW Engineer, prior to beginning pavement work
• Contractor shall provide a weekly rolling 3-week look ahead schedules that are tied to the baseline schedule

I. These dates are entered into Project Coordinator for the web based map, and

II. For Contractors to coordinate their construction activities via the Engineers involved such that the pavement restoration appears to be seamless even though more than one CIP project is under way…i.e., paving immediately after trenching is complete on Utility projects
Citizen Involvement

- Web map of active street projects
- Open Data data.cityofpaloalto.org/home
- PaloAlto311

Source: City of Palo Alto
Citizen Involvement

- Web map of active street projects
- Open Data data.cityofpaloalto.org/home
- PaloAlto311
Citizen Involvement

- Web map of active street projects
- Open Data data.cityofpaloalto.org/home
- PaloAlto311

Source: City of Palo Alto
Project Coordination = Success

• Improved citizen’s quality of life
• All infrastructure is targeted, not just pavement
• Supports Targeted Work Zones
• Provides routine communications and buy-in between stakeholders
• Provides a working examples to neighboring cities
• Easy to get started: simple approach only needs road centerlines

Source: StreetSaver/City of Palo Alto
Accolades (1 of 2)

Recognized at the state level for increasing the PCI from 72 to 78 in five years

Located 35 miles south of San Francisco and 14 miles north of San Jose, Palo Alto is a community of approximately 61,200 residents. Part of the San Francisco Metropolitan Bay Area and Silicon Valley, Palo Alto is located within Santa Clara County and borders San Mateo County.

The City of Palo Alto Public Works Department maintains 200 miles of streets. The City has used its own Pavement Maintenance Management System (PMMS) since the mid 1970's. In 2009, Palo Alto successfully competed a correlation between PMMS and StreetSaver and calculated the City's first pavement maintenance score at 72. Since then, Palo Alto has been focused on improving pavement conditions across the City's 200 mile network.

In October 2010, the City Council appointed a 17-member Infrastructure Blue Ribbon Commission (IBRC) to examine the City's infrastructure and determine a plan to keep the existing infrastructure in good condition. By 2010, Palo Alto's average rating for streets was 73, placing it below many neighboring communities. The IBRC determined that nearly 23% of all Palo Alto's streets were rated under 60.

The IBRC recommended that, by 2021, no street should have a PCI rating below 66 and the City Council established a goal of achieving an average citywide PCI of 85 by 2021. Since 2009,

Palo Alto's PCI score has gone from a 72 to a 78 (end of FY 2014) and we expect to reach a citywide average of 85 by 2019.

Annual funding has increased from $1.7M to $5.1M for street maintenance since FY 2009. In FY 2011, the City Council approved a $2 million annual increase in the paving budget an effort to step-up and address aging City streets. This resulted in an annual budget of $3.7M and in FY 2014, the street resurfacing program budget was increased again to $5.1M to accelerate the timeline for meeting the goal of a citywide PCI of 85 prior to 2021.

Source: California Local Streets & Roads Needs Assessment 2014 Update
City of Palo Alto: A Case Study
Accolades (2 of 2)

Most improved rating for infrastructure management among city departments as rated by citizens

About the Software

• The Encompass GIS suite, including Project Coordinator, is provided by Geodesy www.geodesy.net

• StreetSaver is provided by Metropolitan Transportation Commission www.streetsaveronline.com

• PaloAlto311 was created by PublicStuff www.publicstuff.com
For more information:

Murdo M. Nicolson, Jr.
City of Palo Alto
murdo.nicolson@cityofpaloalto.org

Chip Eitzel
Geodesy
ce@geodesy.net
Smarter Work Zones

FHWA RESOURCES
SWZ Interactive Toolkit Available!

https://www.workzonesafety.org/SWZ/main
Other Resources

Project Coordination Resources

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **FHWA** | • FHWA Work Zone Mobility and Safety Program – Project Coordination
• FHWA Work Zone Mobility and Safety Program – Peer-to-Peer Program
http://www.ops.fhwa.dot.gov/wz/p2p/index.htm |
| **TRB – SHRP2** | • WISE Software Users Guide
| **NCHRP** | • NCHRP Synthesis 413: Techniques for Effective Highway Construction Projects in
Congested Urban Areas
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_41.pdf |
| **Others** | • Highway Construction Coordination to Minimize Traffic Impacts
| **WSDOT Example Documents** | • Data Sharing Agreement between Washington State DOT and Seattle DOT
• Washington State DOT Memorandum of Understanding – Construction Traffic Coordination and Mitigation
Thanks for joining us!

- **Upcoming Events**
 - **Webinar #8**: Integrating Project Coordination and Technology Applications – Iowa DOT
 - Tuesday, December 15, 2015, 1:00-2:30pm EST
 - Registration: https://connectdot.connectsolutions.com/e1qfd7myore/event/event_info.html
 - **Webinar #9**: Technology Application Strategies: Performance Measurement and System Health Monitoring
 - Thursday, January 21, 2016, 1:00-2:30pm EST
 - Check The National Work Zone Safety Information Clearinghouse website for updates https://www.workzonesafety.org/SWZ/main

- **Questions or Comments?**
 - Jawad Paracha (FHWA Operations, WZ Team) Jawad.Paracha@dot.gov