Glare and Light Characteristics of Conventional and Balloon Lighting Systems

Duplication for publication or sale is strictly prohibited without prior written permission of the Transportation Research Board

Title: Glare and Light Characteristics of Conventional and Balloon Lighting Systems

Authors: Marwa M. Hassan, Ibrahim Odeh, and Khaled El-Rayes

Transportation Research Board
89th Annual Meeting
January 11-15, 2010
Washington, D.C.
Glare and Light Characteristics of Conventional and Balloon Lighting Systems

Marwa M. Hassan
Assistant Professor
Department of Construction Management and Industrial Engineering
Louisiana State University
Baton Rouge, LA 70803
e-mail: marwa@lsu.edu

Ibrahim Odeh
PhD Candidate
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
e-mail: iodeh2@illinois.edu

Khaled El-Rayes
Associate Professor
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
e-mail: elrayes@illinois.edu

Word Counts: 4100 + 8
ABSTRACT

With the increasing needs to adopt nighttime construction strategies in order to avoid disruption of traffic flow, state agencies are currently experimenting with a new class of light towers known as balloon lights. Compared to regular lighting tower, balloon lights have been reported to reduce glare significantly and to provide more uniform lighting conditions at the site. The objective of this study was to measure light and glare characteristics of two balloon lighting systems in the field. Glare and lighting characteristics of this new class of light towers were compared to a conventional lighting system. For this purpose, field measurements were made of the pavement luminance and the horizontal and vertical illuminance on a predefined experimental grid. Results of this study indicated that while being comparable in terms of wattage and luminous flux, the tested balloon light systems differed in terms of light and glare characteristics. In addition, while conventional light tower provided greater illuminance intensity at the light source than balloon lights, the disability glare was greater for conventional light tower than balloon lights when mounted at the same height. Results of this study revealed that optimum conditions should be sought in the work zone, through which adequate lighting conditions are provided for workers while disability glare is kept below a safe threshold for drive-by motorists. Plotting the maximum veiling luminance ratio (disability glare) against the workable distance provides a simple approach to consider the two factors concurrently in the design of work zone lighting.

Keywords: disability glare, balloon lighting, nighttime construction
INTRODUCTION

The majority of the US highway system was constructed during the 1950s and 1960s according to population, travel, and freight estimates relevant to those periods. Now, however, as traffic and freight loads have increased exponentially, and as aging, environmental action, use, and misuse have taken their toll, these older systems have begun to deteriorate rapidly, a situation that demands more effective pavement rehabilitation methodologies. Daytime repair and rehabilitation of deteriorated roads result in heavy congestion and delays for the traveling public. In addition, daytime road repair activities are unsafe for the workers at the site, costly, and may affect the quality of the work performed under these conditions (I).

As a result, many state agencies are increasingly favoring that repair and rehabilitation activities be performed at night. Nighttime construction offers many advantages to the public, to surrounding businesses, and to state agencies. These advantages have been widely recognized by researchers and practitioners in the field (2; 4). Nighttime construction minimizes congestion and delay to the road users and reduces economic impacts of construction operations on the surrounding businesses. In addition, it minimizes pollution from idle vehicles in work zones and improves productivity at the construction site by allowing multiple activities to take place at the same time. It also allows for extended working hours at night and cooler temperatures in this environment are favorable for the equipment and the materials being installed.

Despite these many advantages, lighting conditions may affect both the work quality and the safety of workers and road users. Previous research has found that nighttime construction resulted in an 87% increase in accident rates (5). Inadequate lighting conditions were also found to impact workers’ morale and the success of traffic control measures at the work site. In contrast, excessive lighting at the work site may cause glare for drivers and equipment operators. Glare is defined as the sensation produced by luminance in the visual field that is sufficiently greater than the luminance to which the eye has adapted to cause annoyance, discomfort, or loss of visual performance and visibility (6). Controlling glare is a critical and an important issue in adequately lighting highway work zones as it was reported that up to 90% of the necessary information for operating a motor vehicle is visual (7).

With the increasing needs to adopt nighttime construction strategies to avoid disruption of traffic flow, state agencies are currently experimenting with a new class of light towers known as balloon lights. Compared to regular lighting tower, balloon lights have been reported to reduce glare significantly and to provide more uniform lighting conditions at the site. Balloon lights are also characterized by high-powered lightings that can illuminate areas from 550 to 1395m² in diameter and that are mounted on shorter towers compared to regular lighting systems. In spite of these promising benefits, little research has been conducted to measure the lighting characteristics of balloon lighting systems as compared to traditional light towers. In addition, current balloon light technology has been adopted as a whole without the needed supportive research to measure the glare for this new class of light systems and to quantify its variation with lighting types and operational parameters such as height and setup at the work site. Therefore, the objective of this study was to measure light and glare characteristics of two balloon lighting systems in the field. Glare and lighting characteristics of this new class of light towers were compared to a conventional lighting system.
BACKGROUND

Glare is defined as a hindrance to vision by excessive light (8); it is divided into discomfort glare and disability glare. Discomfort glare is the glare that causes discomfort without necessarily impairing the vision of objects. Disability glare is the glare that results in reduced visual performance and visibility; it is often accompanied by discomfort glare (9). A third type of glare has also been mentioned in the literature and is referred to as dazzling glare, which refers to the discomfort associated with light over-exposure originating from a bright field of view such as the sky or a sandy desert (8). Since it is critical to control the loss of visual performance associated with nighttime construction activities, the focus of this study is given to disability glare.

Disability glare is quantified using the veiling luminance ratio, which is the ratio of the veiling luminance to the average pavement luminance in and around the work zone (9). The rationale behind using this ratio rather than the absolute veiling luminance is due to the sensation of glare is not only dependent on the amount of veiling luminance reaching the driver’s eyes as an absolute value, but also on the lighting level at which the driver’s eyes are adapted to before being exposed to that amount of glare. Different models have been developed for the calculation of the veiling luminance. In broad terms, the veiling luminance was defined by Holladay as follows (10):

$$VL = \frac{kVE}{\theta^2 \pi}$$

where,

- VL = Veiling luminance (lux);
- VE = Illuminance upon the eye by the glare source (lux);
- k and n = constants that vary in the literature and with driver’s age; and
- θ = glare angle, between the directions of the glare source and the direction of viewing.

Pavement luminance is defined as a quantitative measure of the surface brightness measured in candelas per square meter (11). Luminance controls the magnitude of the sensation, which the brain receives of the pavement surface. It depends on several factors including: (1) the amount of light incident on the pavement; (2) the reflection characteristics of the pavement surface; (3) relative angle from which the light strikes the surface; and (4) location of the observer.

Most of the work conducted in the area of glare measurements and quantification as related to transportation applications has been in the areas of headlamps and roadway lighting (12). However, limited research has been conducted to date on the measurements of glare in nighttime construction zones. Pioneer work in this area has been mainly conducted by El-Rayes and co-workers (2; 13). Through a comprehensive experimental program and an analysis of field sites, El-Rayes et al. developed practical models to measure and control the levels of glare experienced by drive-by motorists in lanes adjacent to nighttime work zones (2).

EXPERIMENTAL PROGRAM

The objective of the experimental program was to measure and compare the glare and lighting characteristics of two types of balloon lighting systems and a conventional light tower. For this purpose, a field experimental setup was developed at the LSU Petroleum Engineering Research and Technology Transfer Laboratory (PERTT Lab). A vehicle is operated at night in a lane adjacent to a simulated construction site and measurements are made of the pavement luminance.
and the horizontal and vertical illuminances on a predefined experimental grid. The pavement surface was a highly oxidized and bright asphalt material that may be classified as R1 according to the IESNA design guidelines (9). While pavement luminance was measured using a Minolta LS-110 Handheld Photometer, horizontal and vertical illuminances were measured using an EXTECH 401036 light meter. Measurements (illuminance and pavement luminance) were conducted along two lines of sight, the first located at 0.95m from the edge of the lane and the second located at 2.8m from the edge of the lane. These measurements were used to calculate the veiling luminance ratio (disability glare) experienced for different operational and lighting conditions.

To explain the calculation of the veiling luminance ratio, consider the arrangement shown in Figure 1. This experimental arrangement was developed at University of Illinois by El-Rayes and co-workers (2). As recommended by IESNA, a driver is assumed located on a line parallel to the centerline of the roadway. An average height of the driver eye was measured at 1.25m with a line of sight inclined 1° downward. Given these two geometric parameters, the observer would be located at a distance of 83.07m from the point of sight. An experimental grid was set up so that an observer point (p) is defined at a 5m interval. The vertical illuminance from all contributing luminaires is measured in the plane of the driver’s eye at each observer point p using a light meter (p = 1 to P).

![Figure 1](image)

Figure 1 Schematic Representation for Veiling Luminance Ratio Calculations

The veiling luminance experienced by the observer at point p (VL_p) from luminaire k is calculated as follows (2):

$$VL_p = 10VE_p \left(\frac{1}{\theta_{pk}}\right)$$

where,

VE_p = vertical illuminance measured at point p;

θ_{pk} = half-angle of the illuminance distribution of the luminaire.
\[\theta_{pk} = \text{glare angle, between the directions of the glare source and the direction of viewing at observer's point } p \text{ and luminaire } k; \text{ and} \]
\[n = \text{a variable calculated as follows:} \]
\[n = 2.3 - 0.7 \log_{10}(\theta_{pk}) \quad \text{for } \theta_{pk} < 2^\circ \]
\[n = 2 \quad \text{for } \theta_{pk} > 2^\circ \]

To calculate the veiling luminance ratio, the veiling luminance calculated using Equation (2) is divided by the average pavement luminance \(L_p \). To estimate the average pavement luminance, luminance is measured at each point in the grid shown in Figure 2 and is then averaged over the number of viewpoints \(G \):

\[L_p = \frac{L_{p\text{total}}}{G} \quad (3) \]

where,
\[L_{p\text{total}} = \text{total pavement luminance measured at all viewpoints; and} \]
\[G = \text{total number of points considered in the grid.} \]

Lighting Systems

Two types of balloon lighting systems manufactured and distributed by two companies were evaluated in this study, Figure 2. The first balloon lighting system, referred to as B1, provided wattage of 1,000W and a total luminous flux of 115,000lm. The second balloon lighting system, referred to as B2, provided wattage of 1,000W and a total luminous flux of 112,000lm. The advantage of balloon lights over regular lighting towers is that they eliminate hot spots by providing the same light intensity in all directions (14). Balloon lighting systems use a diffusion mechanism, and therefore are less prone to causing glare. Compared to regular lighting systems, balloon lights are extended light sources and are mounted on shorter towers than regular lights (up to 5.4m). The tested conventional light tower was equipped with four floodlights, each with a wattage capacity of 1,000W and a luminous flux of 110,000lm. It provided a maximum mounting height of 9m.
Experimental Cases

Operational parameters and lighting types were varied according to an experimental test matrix. Considered cases aimed at quantifying the experienced glare for different lighting conditions that may be encountered in construction work zones. Table 1 presents the simulated cases in this study; in total, 15 experimental cases were evaluated. As shown in this table, height of the light source was varied as well as the aiming angle of the conventional light system. To account for the interference that may be caused by external lights as well as moonlight, the last case was conducted without any sources of light at the site. Illuminance measurements for this case were subtracted from the illuminance measured for each of the experimental cases. When two floodlights were turned on, they were set in opposite directions to provide lighting before and after the light tower.

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Light Type</th>
<th>Height (m)</th>
<th>Aiming Angle (°)</th>
<th>Distance from Lane Edge (m)</th>
<th>Number of Floodlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1</td>
<td>2.6</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>B1</td>
<td>3.5</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>B1</td>
<td>4.0</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>B1</td>
<td>5.4</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>B1</td>
<td>4.0</td>
<td>NA</td>
<td>1.0</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>B2</td>
<td>2.6</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>B1 and B2</td>
<td>2.6</td>
<td>NA</td>
<td>1.8</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>Ltower</td>
<td>4.0</td>
<td>45</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Ltower</td>
<td>5.0</td>
<td>45</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Ltower</td>
<td>7.0</td>
<td>45</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Ltower</td>
<td>8.5</td>
<td>45</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Ltower</td>
<td>8.5</td>
<td>35</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Ltower</td>
<td>8.5</td>
<td>25</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Ltower</td>
<td>8.5</td>
<td>45</td>
<td>1.8</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>No light</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

RESULTS AND ANALYSIS

Horizontal Illuminance

Figures 3 (a and b) compare the measured horizontal illuminance originating from a balloon light at a 4m height to a light tower mounted at the same height (i.e., Cases 3 and 8). Horizontal illuminance was measured on two parallel lines laterally distributed across the closed lane to measure the adequacy of lighting for construction operations. As shown in these figures, conventional light tower provides greater illuminance intensity at the light source when mounted at the same height. However, light uniformity, which is the ratio of average illuminance on the work area to the minimum level of illuminance, should also be considered in judging the quality of a given light. Therefore, Table 2 presents the maximum measured illuminance at the light
source as well as the light uniformity calculated for each case. A lower value for the light uniformity is indicative of better work conditions in the construction area. The work area was defined considering a minimum illuminance intensity of 54lux as specified in Louisiana for Level I activities (e.g., excavation, sweeping and cleanup). This illuminance threshold allowed defining the coverage distance for each experimental case. The coverage distance sets the maximum distance away from the light source where construction activities can take place with an illuminance of 54lux or greater. The coverage distance for each case is also presented in Table 2. Assuming that the light source is placed in the middle of the work zone, the workable distance will correspond to twice the coverage distance presented in Table 2.

![Graph](a)

Figure 3 Distribution of the Horizontal Illuminance for (a) a Balloon Light and (b) Conventional Light Tower

Based on the results presented in Table 2, one may note that the two types of balloon lights differ in terms of maximum illuminance, light uniformity, and coverage distance (i.e., Cases 1 and 6). As previously mentioned, both balloon lights had the same wattage and comparable luminous flux. However, differences between the two balloon lights may be due to a number of factors. First, the geometry and the type of bulb light for the balloon light source were different. The
balloon diameters for B1 and B2 were 110 and 120cm, respectively. The light lamps for B1 and B2 were Hydrargyrum medium-arc iodide (HMI) and Metal halide lamps, respectively. In addition, the age characteristics of the two balloon light sources may have been different and could have an influence.

As expected, light uniformity of balloon lights improved with the increase in the mounting height while the coverage distance gradually decreased (Cases 1 through 4). Comparing the balloon light at a 4m height to a light tower mounted at the same height (i.e., Cases 3 and 8), one may note that the light tower provides significantly greater light intensity and coverage distance than a single balloon light. From a practical perspective, it appears that if a 20m work zone is required, two balloon lights may be needed to provide sufficient illuminance intensity while two floodlights in a single light tower may be adequate. This means that Cases 7 and 8 are practically comparable. As for the effect of the mounting height on the light characteristics of conventional light tower (i.e., Cases 8 through 11), lighting uniformity improved with the increase in the mounting height under constant aiming angle; however, it appears that the coverage distance gradually increased until it reached a peak and then started to decrease. This means that an optimum height may exist at which the coverage distance is maximum while lighting uniformity is acceptable.

TABLE 2 Light Characteristics for the Evaluated Experimental Cases

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Max. Illuminance (lux)</th>
<th>Light Uniformity</th>
<th>Coverage Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>640</td>
<td>5.5</td>
<td>9.3</td>
</tr>
<tr>
<td>2</td>
<td>540</td>
<td>4.8</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>467</td>
<td>4.3</td>
<td>8.7</td>
</tr>
<tr>
<td>4</td>
<td>215</td>
<td>2.4</td>
<td>8.4</td>
</tr>
<tr>
<td>5</td>
<td>450</td>
<td>4.3</td>
<td>8.2</td>
</tr>
<tr>
<td>6</td>
<td>425</td>
<td>3.8</td>
<td>8.7</td>
</tr>
<tr>
<td>7</td>
<td>920</td>
<td>7.3</td>
<td>10.3</td>
</tr>
<tr>
<td>8</td>
<td>825</td>
<td>5.8</td>
<td>11.5</td>
</tr>
<tr>
<td>9</td>
<td>735</td>
<td>5.4</td>
<td>12.1</td>
</tr>
<tr>
<td>10</td>
<td>385</td>
<td>3.5</td>
<td>13.6</td>
</tr>
<tr>
<td>11</td>
<td>305</td>
<td>3.1</td>
<td>13.1</td>
</tr>
<tr>
<td>12</td>
<td>215</td>
<td>2.6</td>
<td>13.8</td>
</tr>
<tr>
<td>13</td>
<td>212</td>
<td>2.3</td>
<td>13.2</td>
</tr>
<tr>
<td>14</td>
<td>600</td>
<td>4.8</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Disability Glare

Figures 4 (a and b) compare the veiling luminance ratio (disability glare) originating from two balloon lights mounted at a height of 2.6m to a light tower mounted at a height of 4.0m (i.e., Cases 7 and 8). It was shown in the previous section that these lighting arrangements provide comparable workable coverage distances in the field. Trends shown in Figure 4 agree with the measurements reported by other investigators (2). As shown in these figures, the glare experienced by a drive-by motorist gradually increases as we approach the light source, reaches a peak, and then diminishes to become negligible at the light source. The glare experienced at the
first line of sight, located at 0.95 m from the edge of the lane, was always greater than in the
second line of sight located at 2.8 m from the edge of the lane. One may note that the glare
experienced due to the first lighting arrangement (two balloon lights) was less than what was
experienced due to the second light arrangement (conventional light tower – 1.100 vs. 1.248).

Figure 4 Distribution of the Veiling Luminance Ratio for (a) Two Balloon Lights and
(b) a Conventional Light Tower (Cases 7 and 8)

Table 3 presents the maximum veiling luminance ratio, the average maximum veiling luminance
ratio on the two lines of sight, and the average pavement luminance for each of the evaluated
experimental cases. These measurements indicate that balloon lights reduce the experienced
glare in the work zone. However, the two types of balloon lights provided different levels of
glare (i.e., Cases 1 and 6). Therefore, assuming that all types of balloon lights would perform
similarly in the field may be misleading. These differences may be related to the aforementioned
factors (i.e., light geometry and type). As expected, increasing the mounting height of balloon
and conventional light systems caused a reduction in the experienced disability glare by drive-by
motorists. In addition, reducing the aiming angle for conventional light towers also results in a
decrease in the disability glare. However, increasing the mounting height and reducing the
aiming angle will decrease the coverage distance and may result in inadequate lighting
conditions in the work zone. Therefore, optimum conditions should be sought, through which
adequate lighting conditions may be provided while disability glare will be kept below a safe threshold for drive-by motorists.

To illustrate how both factors may be considered in the design of work zone lighting, Figure 5 plots the maximum veiling luminance ratio (disability glare) against the workable distance in meter (the work area can be calculated by multiplying the workable distance by the lane width). The workable distance was obtained by multiplying the coverage distance by two assuming that the light source was placed in the middle of the work area. Assume that a workable distance of 15m is needed while the disability glare is to be maintained below 1.1. Under these conditions, the highlighted cases in the upper rectangle are acceptable since they provide acceptable lighting conditions while maintaining the glare below the required threshold. Similar design strategies may be implemented depending on the maximum allowable glare and the minimum workable distance at the site.

TABLE 3 Glare Characteristics for the Evaluated Experimental Cases

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Maximum VL Ratio</th>
<th>Average Maximum VL Ratio</th>
<th>Average Pavement Luminance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.003</td>
<td>0.769</td>
<td>2.139</td>
</tr>
<tr>
<td>2</td>
<td>0.782</td>
<td>0.616</td>
<td>1.860</td>
</tr>
<tr>
<td>3</td>
<td>0.650</td>
<td>0.512</td>
<td>1.665</td>
</tr>
<tr>
<td>4</td>
<td>0.346</td>
<td>0.287</td>
<td>1.597</td>
</tr>
<tr>
<td>5</td>
<td>0.815</td>
<td>0.655</td>
<td>1.715</td>
</tr>
<tr>
<td>6</td>
<td>1.217</td>
<td>0.922</td>
<td>1.699</td>
</tr>
<tr>
<td>7</td>
<td>1.100</td>
<td>0.825</td>
<td>3.360</td>
</tr>
<tr>
<td>8</td>
<td>1.248</td>
<td>1.030</td>
<td>1.860</td>
</tr>
<tr>
<td>9</td>
<td>1.166</td>
<td>0.949</td>
<td>1.510</td>
</tr>
<tr>
<td>10</td>
<td>0.943</td>
<td>0.826</td>
<td>0.998</td>
</tr>
<tr>
<td>11</td>
<td>1.067</td>
<td>1.007</td>
<td>0.711</td>
</tr>
<tr>
<td>12</td>
<td>0.966</td>
<td>1.041</td>
<td>0.703</td>
</tr>
<tr>
<td>13</td>
<td>0.870</td>
<td>0.938</td>
<td>0.698</td>
</tr>
<tr>
<td>14</td>
<td>1.657</td>
<td>1.772</td>
<td>0.875</td>
</tr>
</tbody>
</table>

![Figure 5](image)
Figure 5 Illustration of the Use of Dual Concepts in the Design of Work Zone Lighting
FINDINGS AND CONCLUSIONS
The objective of this study was to measure light and glare characteristics of two balloon lighting systems in the field. Glare and lighting characteristics of this new class of light towers were compared to a conventional lighting system. Based on the analysis conducted in this study, the following findings and conclusions may be drawn:

- While being comparable in terms of wattage and luminous flux, the tested balloon light systems differed in terms of light and glare characteristics.
- Conventional light tower provided greater illuminance intensity at the light source than balloon lights when mounted at the same height. However, disability glare was greater for conventional light tower than balloon lights when mounted at the same height.
- Increasing the mounting height and reducing the aiming angle of light systems caused a decrease in the experienced glare in the work zone but decreased the coverage distance, in which construction activities can take place.

Results of this study revealed that optimum conditions should be sought in the work zone, through which adequate lighting conditions are provided while disability glare is kept below a safe threshold for drive-by motorists. Plotting the maximum veiling luminance ratio (disability glare) against the workable distance provides a simple approach to consider the two factors concurrently in the design of work zone lighting.

ACKNOWLEDGMENTS
This research was funded through the Louisiana State University Faculty Research Grant. The authors would like to thank Airstar America Inc., and MultiQuip, Inc. for supplying the light systems used in this study. The assistance of Roy Hernandez, Monique Johnson, and Heather Dylla is greatly appreciated.

REFERENCES

