• Skip to primary navigation
  • Skip to main content
  • About
  • Contact
  • Listserv
  • Facebook
  • Twitter
  • Login/Register
workzonesafety.org

National Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • Crash Information
    • Work Zone Fatal Crashes and Fatalities
    • National Estimates of Total and Injury Work Zone Crashes
    • Work Zone Traffic Crash Trends and Statistics
    • Other Work Zone Crash Related Resources
  • Flagger Information
    • Flagger Training and Certification Requirements by State
    • Flagging Resources Developed Under the FHWA Work Zone Safety Grant Program
    • Classes
    • Videos
    • Job Resources
  • Training
    • FHWA Work Zone Safety Grant Products
    • Roadway Safety Training Program
    • Online Learning Management System
    • Training Courses and Programs
    • Training Videos
    • ARTBA
    • ATSSA
    • NHI
    • NSC
    • LTAP/TTAP
    • WSU
  • Events and Conferences
    • National Work Zone Awareness Week 2021
    • Work Zone Safety Conferences
    • Other Work Zone Related Conferences
    • 2021 Transportation Construction Safety Events Calendar
  • Data Resources
    • Searchable Databases
    • Public Awareness
    • Laws, Regulations, Standards, and Policies
    • Manual on Uniform Traffic Control Devices (MUTCD)
  • Hot Topics
    • Improving Large Truck Safety in Work Zones
    • Smarter Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Rear End Crashes
    • Minimizing Construction Interferences with Traffic
    • Managing Speeds
    • Mobile/Short Duration Work Zones
    • Reducing Worker Run-overs and Back-overs
    • Working at Night
    • Reducing Worker Fatigue and Distraction Risks
You are here: Home / Publications / Driver Behavior Models for Heavy Vehicles and Passenger Cars at a Work Zone

Driver Behavior Models for Heavy Vehicles and Passenger Cars at a Work Zone

Author/Presenter: Mahmood, Bawan; Kianfar, Jalil
Abstract:

Traffic impact assessment is a key step in the process of work zone planning and scheduling for transportation agencies. Microscopic traffic simulation models enable transportation agencies to conduct detailed analyses of work zone mobility performance measures during the planning and scheduling process. However, traffic simulation results are valid only when the simulation model is calibrated to replicate driver behavior that is observed in the field. Few studies have provided guidance on the calibration of traffic simulation models at work zones and have off ered driver behavior parameters that reproduce capacity values that are observed in the field. This paper contributes to existing knowledge of work zone simulation by providing separate driver behavior model parameters for heavy vehicles and passenger vehicles. The driver behavior parameters replicate the flow and speed at the work zone taper and at roadway segments upstream of the work zone. A particle swarm optimization framework is proposed to improve the efficiency of the calibration process. The desired time headway was found to be 2.31 seconds for heavy vehicles and 1.53 seconds for passenger cars. The longitudinal following threshold was found to be 17.64 meters for heavy vehicles and 11.70 meters for passenger cars. The proposed parameters were tested against field data that had not previously been used in the calibration of driver behavior models. The average absolute relative error for flow rate at the taper was 10% and the mean absolute error was 54 veh/h/ln. The GEH statistic for the validation dataset was 1.48.

Publisher: MDPI
Publication Date: 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Driver Behavior; Heavy Vehicles; Traffic Models; Traffic Simulation; Work Zones

Copyright © 2021 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Legal Notices/Policies · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute