• Skip to primary navigation
  • Skip to main content
  • About
  • Contact
  • Listserv
  • Facebook
  • Twitter
  • Login/Register
workzonesafety.org

National Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • Crash Information
    • Work Zone Fatal Crashes and Fatalities
    • National Estimates of Total and Injury Work Zone Crashes
    • Work Zone Traffic Crash Trends and Statistics
    • Other Work Zone Crash Related Resources
  • Flagger Information
    • Flagger Training and Certification Requirements by State
    • Flagging Resources Developed Under the FHWA Work Zone Safety Grant Program
    • Classes
    • Videos
    • Job Resources
  • Training
    • FHWA Work Zone Safety Grant Products
    • Roadway Safety Training Program
    • Online Learning Management System
    • Training Courses and Programs
    • Training Videos
    • ARTBA
    • ATSSA
    • NHI
    • NSC
    • LTAP/TTAP
    • WSU
  • Events and Conferences
    • National Work Zone Awareness Week 2021
    • Work Zone Safety Conferences
    • Other Work Zone Related Conferences
    • 2021 Transportation Construction Safety Events Calendar
  • Data Resources
    • Searchable Databases
    • Public Awareness
    • Laws, Regulations, Standards, and Policies
    • Manual on Uniform Traffic Control Devices (MUTCD)
  • Hot Topics
    • Improving Large Truck Safety in Work Zones
    • Smarter Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Rear End Crashes
    • Minimizing Construction Interferences with Traffic
    • Managing Speeds
    • Mobile/Short Duration Work Zones
    • Reducing Worker Run-overs and Back-overs
    • Working at Night
    • Reducing Worker Fatigue and Distraction Risks
You are here: Home / Publications / Improved Support Vector Machine Models for Work Zone Crash Injury Severity Prediction and Analysis

Improved Support Vector Machine Models for Work Zone Crash Injury Severity Prediction and Analysis

Author/Presenter: Mokhtarimousavi, Seyedmirsajad; Anderson, Jason C.; Azizinamini, Atorod; Hadi, Mohammed
Abstract:

Work zones are a high priority issue in the field of road transportation because of their impacts on traffic safety. A better understanding of work zone crashes can help to identify the contributing factors and countermeasures to enhance roadway safety. This study investigates the prediction of work zone crash severity and the contributing factors by employing a parametric approach using the mixed logit modeling framework and a non-parametric machine learning approach using the support vector machine (SVM). The mixed logit model belongs to the class of random parameter models in which the effects of flexible variables across different observations are identified, that is, data heterogeneity is taken into account. The performance of the SVM model is enhanced by applying three metaheuristic algorithms: particle swarm optimization (PSO), harmony search (HS), and the whale optimization algorithm (WOA). Empirical findings indicate that SVM provides higher prediction accuracy and outperforms the mixed logit model. Estimation results reveal key factors that increase the likelihood of severe work zone crashes. Furthermore, the analysis illustrates the ability of the three metaheuristics to enhance the SVM and the superiority of the harmony search algorithm in improving the performance of the SVM model.

Source: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2673
Issue: 11
Publisher: Transportation Research Board
Publication Date: June 19, 2019
Full Text URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Crash Causes; Injury Severity; Machine Learning; Mathematical Models; Work Zone Safety; Work Zones

Copyright © 2021 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Legal Notices/Policies · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute