• Skip to primary navigation
  • Skip to main content
  • About
  • Contact
  • Listserv
  • Facebook
  • Twitter
  • Login/Register
workzonesafety.org

National Work Zone Safety Information Clearinghouse

Library of Resources to Improve Roadway Work Zone Safety for All Roadway Users

  • Crash Information
    • Work Zone Fatal Crashes and Fatalities
    • National Estimates of Total and Injury Work Zone Crashes
    • Work Zone Traffic Crash Trends and Statistics
    • Other Work Zone Crash Related Resources
  • Flagger Information
    • Flagger Training and Certification Requirements by State
    • Flagging Resources Developed Under the FHWA Work Zone Safety Grant Program
    • Classes
    • Videos
    • Job Resources
  • Training
    • FHWA Work Zone Safety Grant Products
    • Roadway Safety Training Program
    • Online Learning Management System
    • Training Courses and Programs
    • Training Videos
    • ARTBA
    • ATSSA
    • NHI
    • NSC
    • LTAP/TTAP
    • WSU
  • Events and Conferences
    • National Work Zone Awareness Week 2021
    • Work Zone Safety Conferences
    • Other Work Zone Related Conferences
    • 2021 Transportation Construction Safety Events Calendar
  • Data Resources
    • Searchable Databases
    • Public Awareness
    • Laws, Regulations, Standards, and Policies
    • Manual on Uniform Traffic Control Devices (MUTCD)
  • Hot Topics
    • Improving Large Truck Safety in Work Zones
    • Smarter Work Zones
    • Transportation Management Plans
    • Accommodating Pedestrians
    • Rear End Crashes
    • Minimizing Construction Interferences with Traffic
    • Managing Speeds
    • Mobile/Short Duration Work Zones
    • Reducing Worker Run-overs and Back-overs
    • Working at Night
    • Reducing Worker Fatigue and Distraction Risks
You are here: Home / Publications / Lane Width Estimation in Work Zones Using LiDAR-Based Mobile Mapping Systems

Lane Width Estimation in Work Zones Using LiDAR-Based Mobile Mapping Systems

Author/Presenter: Ravi, Radhika; Cheng, Yi-Ting; Lin, Yi-Chun; Lin, Yun-Jou; Hasheminasab, Seyyed Meghdad; Zhou, Tian; Flatt, John Evan; Habib, Ayman
Abstract:

Lane width evaluation is one of the crucial aspects in road safety inspection, especially in work zones where an arrow lane width can result in a reduced roadway capacity and also, increase the probability of severe accidents. Using mobile mapping systems (MMS) equipped with laser scanners is a safe and cost-effective method for rapidly collecting detailed information along road surface. This paper presents an approach to derive lane width estimates using point clouds acquired from a geometrically-calibrated mobile mapping system. Starting from an accurate LiDAR point cloud, the road surface is extracted with the assistance of trajectory elevation data. Lane markings are identified based on the intensity data. Next, the lane marking centerline is derived and clustered to identify areas with ambiguous or missing lane markings and finally, use the normal (or, unambiguous) lane markings to estimate the lane width. The derived lane width estimates are used to develop are porting mechanism for areas with narrow lanes, ambiguous lane markings, missing lane markings, and/or wide lanes.

Source: IEEE Transactions on Intelligent Transportation Systems
Publication Date: October 2019
Source URL: Link to URL
Publication Types: Books, Reports, Papers, and Research Articles
Topics: Digital Mapping; Pavement Markings; Traffic Lanes; Width; Work Zones

Copyright © 2021 American Road & Transportation Builders Association (ARTBA). The National Work Zone Safety Information Clearinghouse is a project of the ARTBA Transportation Development Foundation. It is operated in cooperation with the U.S. Federal Highway Administration and Texas A&M Transportation Institute. | Copyright Statement · Legal Notices/Policies · Disclaimer
American Road and Transportation Builders Association Transportation Development Foundation, American Road and Transportation Builders Association U.S. Department of Transportation Federal Highway Administration Texas A&M Transportation Institute